
Objective-C Language

and GNUstep Base Library

Programming Manual

Francis Botto (Brainstorm)
Richard Frith-Macdonald (Brainstorm)
Nicola Pero (Brainstorm)
Adrian Robert

Copyright c© 2001-2004 Free Software Foundation
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

i

Table of Contents

1 Introduction . 3
1.1 What is Object-Oriented Programming? . 3

1.1.1 Some Basic OO Terminology . 3
1.2 What is Objective-C? . 5
1.3 History . 5
1.4 What is GNUstep? . 6

1.4.1 GNUstep Base Library . 6
1.4.2 GNUstep Make Utility . 7
1.4.3 A Word on the Graphical Environment 7
1.4.4 The GNUstep Directory Layout . 7

1.5 Building Your First Objective-C Program . 8

2 The Objective-C Language 11
2.1 Non OO Additions . 11
2.2 Objects . 11

2.2.1 Id and nil . 12
2.2.2 Messages . 12
2.2.3 Polymorphism . 13

2.3 Classes . 13
2.3.1 Inheritance . 13
2.3.2 Inheritance of Methods . 14
2.3.3 Overriding Methods . 14
2.3.4 Abstract Classes . 14
2.3.5 Class Clusters . 15

2.4 NSObject: The Root Class . 15
2.4.1 The NSObject Protocol . 16

2.5 Static Typing . 16
2.5.1 Type Introspection. 16
2.5.2 Referring to Instance Variables . 17

2.6 Working with Class Objects . 17
2.6.1 Locating Classes Dynamically . 18

2.7 Naming Constraints and Conventions . 18
2.8 Strings in GNUstep . 19

2.8.1 Creating NSString Static Instances . 19
2.8.2 NSString +stringWithFormat: . 19
2.8.3 C String Conversion . 20
2.8.4 NSMutableString . 20
2.8.5 Loading and Saving Strings . 21

ii Objective-C GNUstep Base Programming Manual

3 Working with Objects. 23
3.1 Initializing and Allocating Objects . 23

3.1.1 Initialization with Arguments . 23
3.1.2 Memory Allocation and Zones . 24
3.1.3 Memory Deallocation . 24

3.2 Memory Management. 25
3.2.1 Explicit Memory Management . 25
3.2.2 OpenStep-Style (Retain/Release) Memory Management . . 26

3.2.2.1 Autorelease Pools . 27
3.2.2.2 Avoiding Retain Cycles . 28
3.2.2.3 Summary . 29

3.2.3 Garbage Collection Based Memory Management 29
3.2.4 Current Recommendations . 30

4 Writing New Classes . 31
4.1 Interface . 31

4.1.1 Interface Capabilities . 31
4.1.2 Including Interfaces . 33
4.1.3 Referring to Classes - @class . 33

4.2 Implementation . 34
4.2.1 Writing an Implementation . 34
4.2.2 Super and Self . 35
4.2.3 Instance Initialization . 36
4.2.4 Flexible Initialization . 39
4.2.5 Instance Deallocation . 40

4.3 Protocols . 41
4.3.1 Declaring a Formal Protocol . 41
4.3.2 Implementing a Formal Protocol . 41
4.3.3 Using a Formal Protocol . 42

4.4 Categories . 43
4.4.1 Category Overrides . 44
4.4.2 Categories as an Implementation Tool 44
4.4.3 Categories and Protocols . 44

4.5 Simulating Private and Protected Methods 45
4.6 Simulating Class Variables . 46

5 Advanced Messaging . 49
5.1 How Messaging Works . 49
5.2 Selectors . 50

5.2.1 The Target-Action Paradigm . 50
5.2.2 Obtaining Selectors . 51
5.2.3 Avoiding Messaging Errors when an Implementation is Not

Found . 51
5.3 Forwarding . 52
5.4 Implementations . 53

iii

6 Exception Handling, Logging, and Assertions
. 55

6.1 Exceptions . 55
6.1.1 Catching and Handling Exceptions . 55
6.1.2 Passing Exceptions Up the Call Stack 56
6.1.3 Where do Exceptions Originate? . 57
6.1.4 Creating Exceptions . 57
6.1.5 When to Use Exceptions . 58

6.2 Logging . 59
6.2.1 NSLog . 59
6.2.2 NSDebugLog, NSWarnLog . 59
6.2.3 Last Resorts: GSPrintf and fprintf . 61
6.2.4 Profiling Facilities . 61

6.3 Assertions . 61
6.3.1 Assertions and their Handling . 61
6.3.2 Custom Assertion Handling. 62

6.4 Comparison with Java . 62

7 Distributed Objects . 63
7.1 Object Interaction . 63
7.2 The GNUstep Solution . 63

7.2.1 Code at the Server . 64
7.2.2 Code at the Client . 65
7.2.3 Using a Protocol . 67
7.2.4 Complete Code for Telephone Directory Application 68
7.2.5 GNUstep Distributed Objects Name Server 69
7.2.6 Look Ma, No Stubs! . 70

7.3 A More Involved Example . 70
7.3.1 Protocol Adopted at Client . 70
7.3.2 Protocol Adopted at Server . 71
7.3.3 Code at the Client . 71
7.3.4 Code at the Server . 74

7.4 Language Support for Distributed Objects 79
7.4.1 Protocol Type Qualifiers . 79
7.4.2 Message Forwarding . 81

7.5 Error Checking . 82
7.5.1 Vending the Server Object . 82
7.5.2 Catching Exceptions . 82
7.5.3 The Connection Fails . 82

iv Objective-C GNUstep Base Programming Manual

8 Base Library . 83
8.1 Copying, Comparing, Hashing Objects . 83
8.2 Object Containers . 84
8.3 Data and Number Containers . 85

8.3.1 NSData . 85
8.3.2 NSValue . 86
8.3.3 NSNumber . 86
8.3.4 NSRange, NSPoint, NSSize, NSRect . 87

8.4 Date/Time Facilities . 87
8.5 String Manipulation and Text Processing . 87

8.5.1 NSScanner and Character Sets . 87
8.5.2 Attributed Strings . 87
8.5.3 Formatters . 87

8.6 File Handling . 87
8.7 Persistence and Serialization . 88

8.7.1 Property List Serialization . 88
8.7.2 Archives . 89

8.8 Utility . 91
8.9 Notifications . 92
8.10 Networking and RPC . 93

8.10.1 Basic Networking . 93
8.10.2 Remote Process Communications . 94

8.11 Threads and Run Control . 94
8.11.1 Run Loops and Timers . 94
8.11.2 Tasks and Pipes . 95
8.11.3 Threads and Locks . 95
8.11.4 Using NSConnection to Communicate Between Threads . . 97

8.12 GNUstep Additions . 98

Appendix A The GNUstep Documentation
System. 99

A.1 Quick Start . 99
A.2 Cross-Referencing . 100
A.3 Comment the Interface or the Implementation? 100
A.4 Comparison with OS X Header Doc and Java JavaDoc 101

Appendix B Application Resources: Bundles
and Frameworks . 103

v

Appendix C Differences and Similarities
Between Objective-C, Java, and C++ 105

C.1 General . 105
C.2 Language . 105
C.3 Source Differences . 106
C.4 Compiler Differences . 106
C.5 Developer’s Workbench . 106
C.6 Longevity . 106
C.7 Databases . 106
C.8 Memory. 106
C.9 Class Libraries . 107

Appendix D Programming GNUstep in Java and
Guile . 109

Appendix E GNUstep Compliance to Standards
. 111

E.1 Conditional Compilation . 111
E.2 User Defaults . 111

Appendix F Using the GNUstep Make Package
. 113

F.1 Makefile Contents . 113
F.1.1 Makefile Example . 113
F.1.2 Makefile Structure . 114
F.1.3 Debug and Profile Information . 114
F.1.4 Static, Shared and DLLs . 115

F.2 Project Types . 115

Concept Index . 117

vi Objective-C GNUstep Base Programming Manual

1

The aim of this document is to provide a GNUstep/Objective-C programming manual
(primarily tutorial in style) for the language, the GNUstep Base library, and the GNUstep
Make package. While to focus is on Objective-C, the GNUstep libraries can also be used
from Java and Guile, and some information on this usage is also included.

The manual does not cover installation instructions as these vary from system to system,
and are documented fairly well in the GNUstep HOWTO.

The target audience for this manual is the C, C++, or Java programmer that wishes to
learn to use Objective-C effectively. We assume that, while the reader is able to understand
English, it is quite possibly not their native language.

For detailed class reference documentation the reader is directed to the GNUstep Base
Library documentation, and to the Apple Cocoa Objective-C Foundation documentation
(available through http://www.apple.com).

../../../User/GNUstep/gnustep-howto_toc.html
../Reference/index.html
http://www.apple.com

2 Objective-C GNUstep Base Programming Manual

Chapter 1: Introduction 3

1 Introduction

The aim of this manual is to introduce you to the Objective-C language and the GNUstep
development environment, in particular the Base library. The manual is organised to give
you a tutorial introduction to the language and APIs, by using examples whenever possible,
rather than providing a lengthy abstract description.

While Objective-C is not a difficult language to learn or use, some of the terms may be unfa-
miliar, especially to those that have not programmed using an object-oriented programming
language before. Whenever possible, concepts will be explained in simple terms rather than
in more advanced programming terms, and comparisons to other languages will be used to
aid in illustration.

1.1 What is Object-Oriented Programming?

There are several object-oriented (OO) programming languages in common use today and
you have probably heard of some of them: C++ and Java for example, and of course
Objective-C. OO languages all have one thing in common: they allow you to design and
write programs in a different way than if you used a traditional procedural language like C
or Pascal.

Procedural languages provide the programmer with basic building blocks that consist of
data types, (integers, characters, float etc) and functions that act on that data. This forces
the program designer to design the program using these same building blocks. Quite often
this requires quite a leap in imagination between what the program must do and how it can
be implemented.

Object-oriented languages allow the program designer to think in terms of building blocks
that are closer to what the program will actually do. Rather than think in terms of data
and functions that act on that data, OO languages provide you with objects and the ability
to send messages to those objects. Objects are, in a sense, like mini programs that can
function on their own when requested by the program or even another object.

For example, an object may exist that can draw a rectangle in a window; all you need to do
as a programmer is send the appropriate messages to that object. The messages could tell
the object the size of the rectangle and position in the window, and of course tell the object
to draw itself. Program design and implementation is now reduced to sending messages to
the appropriate objects rather than calling functions to manipulate data.

1.1.1 Some Basic OO Terminology

OO languages add to the vocabulary of more traditional programming languages, and it
may help if you become familiar with some of the basic terms before jumping in to the
language itself.

Objects

As stated previously, an object is one of the basic building blocks in OO programming.
An object can receive messages and then act on these messages to alter the state of itself
(the size and position of a rectangle object for example). In software an object consists
of instance variables (data) that represent the state of the object, and methods (like C
functions) that act on these variables in response to messages.

4 Objective-C GNUstep Base Programming Manual

Rather than ’calling’ one of its methods, an object is said to ’perform’ one of its methods
in response to a message. (A method is known as a ’member function’ in C++.)

Classes

All objects of the same type are said to be members of the same class. To continue with
the rectangle example, every rectangle could belong to a rectangle class, where the class
defines the instance variables and the methods of all rectangles.

A class definition by itself does not create an object but instead acts like a template for
each object in that class. When an object is created an ’instance’ of that class is said to
exist. An instance of a class (an object) has the same data structure (instance variables)
and methods as every other object in that class.

Inheritance

When you define a new class you can base it on an existing class. The new class would then
’inherit’ the data structure and methods of the class that you based it on. You are then
free to add instance variables and methods, or even modify inherited methods, to change
the behavior of the new class (how it reacts to messages).

The base class is known as the ’superclass’ and the new class as the ’subclass’ of this
superclass. As an example, there could be a superclass called ’shapes’ with a data structure
and methods to size, position and draw itself, on which you could base the rectangle class.

Polymorphism

Unlike functions in a procedural program such as C, where every function must have a
unique name, a method (or instance variable) in one class can have the same name as that
in another class.

This means that two objects could respond to the same message in completely different ways,
since identically named methods may do completely different things. A draw message sent
to a rectangle object would not produce the same shape as a draw message sent to a circle
object.

Encapsulation

An object hides its instance variables and method implementations from other parts of the
program. This encapsulation allows the programmer that uses an object to concentrate on
what the object does rather than how it is implemented.

Also, providing the interface to an object does not change (the methods of an object and how
they respond to received messages) then the implementation of an object can be improved
without affecting any programs that use it.

Dynamic Typing and Binding

Due to polymorhism, the method performed in response to a message depends on the class
(type) of the receiving object. In an OO program the type, or class, of an object can be
determined at run time (dynamic typing) rather than at compile time (static typing).

The method performed (what happens as a result of this message) can then be determined
during program execution and could, for example, be determined by user action or some
other external event. Binding a message to a particular method at run time is known as
dynamic binding.

Chapter 1: Introduction 5

1.2 What is Objective-C?

Objective-C is a powerful object-oriented (OO) language that extends the procedural lan-
guage ANSI C with the addition of a few keywords and compiler directives, plus one syn-
tactical addition (for sending messages to objects). This simple extension of ANSI C is
made possible by an Objective-C runtime library (libobjc) that is generally transparent to
the Objective-C programmer.
During compilation of Objective-C source code, OO extensions in the language compile to
C function calls to the runtime library. It is the runtime library that makes dynamic typing
and binding possible, and that makes Objective-C a true object-oriented language.
Since Objective-C extends ANSI C with a few additional language constructs (the compiler
directives and syntactical addition), you may freely include C code in your Objective-C
programs. In fact an Objective-C program may look familiar to the C programmer since it
is constructed using the traditional main function.

#include <stdio.h>
#include <objc/objc.h>

int main (void)
{

/* Objective C and C code */

return(0);
}

Objective-C source files are compiled using the standard GNU gcc compiler. The compiler
recognises Objective-C source files by the .m file extension, C files by the .c extension and
header files by the .h extension.
As an example, the command $gcc -o testfile testfile.m -lobjc would compile the Objective-
C source file testfile.m to an executable named testfile. The -lobjc compiler option
is required for linking an Objective-C program to the runtime library. (On GNU/Linux
systems you may also need the -lpthreads option.)
The GNUstep make utility provides an alternative (and simple) way to compile large
projects, and this useful utility is discussed in the next section.
Relative to other languages, Objective-C is more dynamic than C++ or Java in that it binds
all method calls at runtime. Java gets around some of the limitations of static binding with
explicit runtime “reflection” mechanisms. Objective-C has these too, but you do not need
them as often as in Java, even though Objective-C is compiled while Java is interpreted.
More information can be found in Appendix Appendix C [Objective-C Java and C++],
page 105.

1.3 History

Objective-C was specified and first implemented by Brad Cox and his company Stepstone
Corporation during the early 1980’s. They aimed to minimally incorporate the object-
oriented features of Smalltalk-80 into C. Steve Jobs’s NeXT licensed Objective-C from
StepStone in 1988 to serve as the foundation of the new NeXTstep development and oper-
ating environment. NeXT implemented its own compiler by building on the gcc compiler,

6 Objective-C GNUstep Base Programming Manual

modifications that were later contributed back to gcc in 1991. No less than three runtime
libraries were subsequently written to serve as the GNU runtime; the one currently in use
was developed by Danish university student Kresten Krab Thorup.

Smalltalk-80 also included a class library, and Stepstone’s Objective-C implementation con-
tained its own library based loosely on it. This in turn influenced the design of the NeXTstep
class libraries, which are what GNUstep itself is ultimately based on.

After NeXT exited the hardware business in the early 1990s, its Objective-C class library
and development environment, NeXTstep, was renamed OpenStep and ported to run on
several different platforms. Apple acquired NeXT in 1996, and after several years figuring
out how to smooth the transition from their current OS, they released a modified, enhanced
version of the NeXTstep operating system as Mac OS X, or “10” in 1999. The class libraries
in OS X contain additions related to new multimedia capabilities and integration with Java,
but their core is still essentially the OpenStep API.

This API consists of two parts: the Foundation, a collection of non-graphical classes for
data management, network and file interaction, date and time handling, and more, and
the AppKit, a collection of user interface widgets and windowing machinery for developing
full-fledged graphical applications. GNUstep provides implementations of both parts of
this API, together with a graphical engine for rendering AppKit components on various
platforms.

1.4 What is GNUstep?

GNUstep is an object-oriented development environment that provides the Objective-C pro-
grammer with a range of utilities and libraries for building large, cross-platform, applications
and tools. It is split into three components: Base, non-graphical classes corresponding to
the NeXTstep Foundation API, GUI, consisting of graphical classes corresponding to the
NeXTstep AppKit API, and Back, a modular framework for rendering instance of the GUI
classes on multiple platforms.

GNUstep is generally compatible with the OpenStep specification and with recent devel-
opments of the MacOS (Cocoa) API. Where MacOS deviates from the OpenStep API,
GNUstep generally attempts to support both versions. See Appendix Appendix E [Com-
pliance to Standards], page 111 for more detailed information.

This manual does not discuss the full functionality of GNUstep but concentrates on us-
ing the GNUstep Base library to create non-graphical programs, and the GNUstep make
utility to compile these programs. Further information about GNUstep can be found at
http://gnustep.org.

1.4.1 GNUstep Base Library

The GNUstep base library contains a powerful set of non-graphical Objective-C classes
that can readily be used in your programs. At present there are approximately 70 different
classes available, including classes to handle strings and arrays, dates and times, distributed
objects, URLs and file systems (to name but a few). It is similar to but more stable than the
non-graphical portion of the Java Development Kit (JDK) API (see Appendix Appendix C
[Objective-C Java and C++], page 105 for more information).

http://gnustep.org

Chapter 1: Introduction 7

Classes in the base library are easily identified since they begin with the upper case charac-
ters ’NS’, as in NSString. Some examples in this manual use classes from the base library,
but for complete documentation on the base library see the API documentation.

1.4.2 GNUstep Make Utility

The GNUstep make utility is the GNU version of the UNIX make utility, plus a number of
predefined rules specialized for building GNUstep projects. So what does it do? It simplifies
the process of building (compiling and linking) a large project. You simply type make at the
command prompt and the make utility takes care of file dependencies, only re-compiling
source files that have changed, or that depend on files that have changed, since the last
’make’ (a header file for example). It also takes care of including the proper GNUstep
header and library references automatically.

Before using make you must first create a ’makefile’ that lists all the files and file dependen-
cies in your project. The easiest way to do this is to copy an existing makefile and change
it to suit your own project.

The make utility will be used to build the Objective-C examples shown in this manual,
and when an example can be compiled then the makefile will also be shown. For a full
description of the make utility see its documentation.

1.4.3 A Word on the Graphical Environment

The GNUstep GUI component is discussed elsewhere, but a brief overview is useful here.
GNUstep GUI provides a collection of classes for developing graphical applications, includ-
ing windows, controls (also known as widgets, and back-end components for event handling
and other functions. Internally, the implementation is divided into two components, the
back end and the front end. The front end provides the API to the developer, and makes
display postscript (DPS) calls to the back end to implement it. The back-end converts the
DPS calls into calls to the underlying window system. If you install GNUstep from source,
you must first compile and install the front end, then compile and install the back end.

Implementations of the back-end have been produced for both X11 (Linux/UNIX systems),
and Windows. There is also a quasi-native display postscript system similar to what was
available on the NeXT but using Ghostscript to render to X11. This implementation is
largely complete, but proved to be inefficient and difficult to optimize relative to the cur-
rent back-end framework (which converts the DPS from the front end to window drawing
commands immediately rather than relying on a postscript stack).

1.4.4 The GNUstep Directory Layout

The directories of a GNUstep installation are organized in a fashion that balances compat-
ibility with NeXTstep/OpenStep/OS X with traditional Unix filesystem conventions. The
highest level of organization consists of four domains - the System, Local, Network, and
Users. System holds the main GNUstep installation, including the Base and GUI libraries
and documentation. Local holds third party applications, custom extension libraries, etc.,
analogously to /usr/local on a Unix system. Network mounts shared files in a networked
environment. Users usually exists as $HOME/GNUstep and holds preferences files and per-
sonal application data. There is further documentation available on the complete directory
layout.

../Reference/index.html
../../Make/Manual/make_toc.html
../../Gui/ProgrammingManual/manual_toc.html
../../../User/GNUstep/filesystem_toc.html

8 Objective-C GNUstep Base Programming Manual

Usually, on a Unix-type system, the GNUstep installation will be found under
/usr/lib/GNUstep.

1.5 Building Your First Objective-C Program

The following example will show you how to create and compile an Objective-C program.
The example simply displays a text message on the screen, and there are easier ways to to do
this, but the example does demonstrate a number of object-oriented features of Objective-C,
and also demonstrates the use of make to compile an Objective-C program.
1. Create a new project directory to hold your project.

2. Create the following Objective-C source code using your favourite text editor and save
it in the project directory with the filename source.m.

#include <stdio.h>

/*
* The next #include line is generally present in all Objective-C
* source files that use GNUstep. The Foundation.h header file
* includes all the other standard header files you need.
*/
#include <Foundation/Foundation.h>

/*
* Declare the Test class that implements the class method (classStringValue).
*/
@interface Test
+ (const char *) classStringValue;
@end

/*
* Define the Test class and the class method (classStringValue).
*/
@implementation Test
+ (const char *) classStringValue;
{
return "This is the string value of the Test class";

}
@end

/*
* The main() function: pass a message to the Test class
* and print the returned string.
*/
int main(void)
{
printf("%s\n", [Test classStringValue]);

Chapter 1: Introduction 9

return 0;
}

The text between comment markers (/* */) is ignored by the compiler but indicates
to someone reading the source file what each part of the program does. The program
is an example of a (class) method responding to a message. Can you see how it works?

A message is sent to the Test class as an argument to printf(), requesting the string
value of that class. The Test class performs its classStringValue method in response
to this message and returns a string that is finally printed. No object is created in this
program since a class method does not require an instance of a class in order to respond
to a message.

You will learn more about class methods in the next chapter.

3. Now create the makefile, again using your favourite text editor, and save it in the same
project directory with the filename GNUmakefile.

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = LogTest
LogTest_OBJC_FILES = source.m

include $(GNUSTEP_MAKEFILES)/tool.make

If you look at the makefile above you will notice the two lines that tell the make utility
to build a tool with the filename LogTest from the Objective-C source file source.m.
You could copy and modify this makefile for later projects you may have: just change
the tool name and list the new source files.

The two ’include’ lines are just a way of keeping your makefile simple, by including two
’ready-made’ makefiles that someone else created.

4. Before you can execute this makefile you must first set your GNUstep environment
variables. Among other things this defines the GNUSTEP_MAKEFILES variable referenced
above. The simplest way to do this is to execute one of the following commands (you
must first locate your GNUstep installation manually):
C shell:
source <GNUstep root>/System/Library/Makefiles/GNUstep.csh

Bourne shell:
. <GNUstep root>/System/Library/Makefiles/GNUstep.sh

On most Unix systems, GNUstep is installed in /usr/lib/GNUstep. (Directory layout
documentation.)

../../../User/GNUstep/filesystem_toc.html
../../../User/GNUstep/filesystem_toc.html

10 Objective-C GNUstep Base Programming Manual

5. You can now compile the project using make. At the system command prompt, change
to the project directory and enter the make command.

6. Run the program (on Unix enter ./obj/LogTest at the command prompt). The message
"This is the string value of the Test class" will be displayed (assuming there were no
errors).

You have now compiled and run your first Objective-C program. Hungry for more? Then
read on.

Chapter 2: The Objective-C Language 11

2 The Objective-C Language

In the previous chapter you were introduced to some basic object-oriented programming
terms. This chapter will expand on these terms, and introduce you to some new ones,
while concentrating on how they apply to the Objective-C language and the GNUstep base
library. First let us look at some non OO additions that Objective-C makes to ANSI C.

2.1 Non OO Additions

Objective-C makes a few non OO additions to the syntax of the C programming language
that include:
• A boolean data type (BOOL) capable of storing either of the values YES or NO.

A BOOL is a scalar value and can be used like the familiar int and char data types.
A BOOL value of NO is zero, while YES is non-zero.

• The use of a pair of slashes (//) to mark text up to the end of the line as a comment.
• The #import preprocessor directive was added; it directs the compiler to include a file

only if it has not previously been included for the current compilation. This directive
should only be used for Objective-C headers and not ordinary C headers, since the
latter may actually rely on being included more than once in certain cases to support
their functionality.

2.2 Objects

Object-oriented (OO) programming is based on the notion that a software system can be
composed of objects that interact with each other in a manner that parallels the interaction
of objects in the physical world.
This model makes it easier for the programmer to understand how software works since it
makes programming more intuitive. The use of objects also makes it easier during program
design: take a big problem and consider it in small pieces, the individual objects, and how
they relate to each other.
Objects are like mini programs that can function on their own when requested by the
program or even another object. An object can receive messages and then act on these
messages to alter the state of itself (the size and position of a rectangle object in a drawing
program for example).
In software an object consists of instance variables (data) that represent the state of the
object, and methods (like C functions) that act on these variables in response to messages.
As a programmer creating an application or tool, all you need do is send messages to the
appropriate objects rather than call functions that manipulate data as you would with a
procedural program.
The syntax for sending a message to an object, as shown below, is one of the additions that
Objective-C adds to ANSI C.

[objectName message];

Note the use of the square [] brackets surrounding the name of the object and message.
Rather than ’calling’ one of its methods, an object is said to ’perform’ one of its methods
in response to a message. The format that a message can take is discussed later in this
section.

12 Objective-C GNUstep Base Programming Manual

2.2.1 Id and nil

Objective-C defines a new type to identify an object: id, a type that points to an object’s
data (its instance variables). The following code declares the variable ’button’ as an object
(as opposed to ’button’ being declared an integer, character or some other data type).

id button;

When the button object is eventually created the variable name ’button’ will point to the
object’s data, but before it is created the variable could be assigned a special value to
indicate to other code that the object does not yet exist.
Objective-C defines a new keyword nil for this assignment, where nil is of type id with
an unassigned value. In the button example, the assignment could look like this:

id button = nil;

which assigns nil in the declaration of the variable.
You can then test the value of an object to determine whether the object exists, perhaps
before sending the object a message. If the test fails, then the object does not exist and
your code can execute an alternative statement.

if (anObject != nil)
... /* send message */

else
... /* do something else */

The header file objc/objc.h defines id, nil, and other basic types of the Objective-C lan-
guage. It is automatically included in your source code when you use the compiler directive
#include <Foundation/Foundation.h> to include the GNUstep Base class definitions.

2.2.2 Messages

A message in Objective-C is the mechanism by which you pass instructions to objects. You
may tell the object to do something for you, tell it to change its internal state, or ask it for
information.
A message usually invokes a method, causing the receiving object to respond in some way.
Objects and data are manipulated by sending messages to them. Like C-functions they
have return types, but function specific to the object.
Objects respond to messages that make specific requests. Message expressions are enclosed
in square brackets and include the receiver or object name and the message or method name
along with any arguments.
To send a message to an object, use the syntax:
[receiver messagename];

where receiver is the object.

The run-time system invokes object methods that are specified by messages. For example,
to invoke the display method of the mySquare object the following message is used:
[mySquare display];

Messages may include arguments that are prefixed by colons, in which case the colons are
part of the message name, so the following message is used to invoke the setFrameOrigin::
method:

Chapter 2: The Objective-C Language 13

[button setFrameOrigin: 10.0 : 10.0];

Labels describing arguments precede colons:
[button setWidth: 20.0 height: 122.0];

invokes the method named setWidth:height:

Messages that take a variable number of arguments are of the form:
[receiver makeList: list, argOne, argTwo, argThree];

A message to nil does NOT crash the application (while in Java messages to null raise
exceptions); the Objective-C application does nothing.
For example:
[nil display];

will do nothing.
If a message to nil is supposed to return an object, it will return nil. But if the method is
supposed to return a primitive type such as an int, then the return value of that method
when invoked on nil, is undefined. The programmer therefore needs to avoid using the
return value in this instance.

2.2.3 Polymorphism

Polymorphism refers to the fact that two different objects may respond differently to the
same message. For example when client objects receive an alike message from a server ob-
ject, they may respond differently. Using Dynamic Binding, the run-time system determines
which code to execute according to the object type.

2.3 Classes

A class in Objective-C is a type of object, much like a structure definition in C except that in
addition to variables, a class has code – method implementations – associated with it. When
you create an instance of a class, also known as an object, memory for each of its variables
is allocated, including a pointer to the class definition itself, which tells the Objective-C
runtime where to find the method code, among other things. Whenever an object is sent a
message, the runtime finds this code and executes it, using the variable values that are set
for this object.

2.3.1 Inheritance

Most of the programmer’s time is spent defining classes. Inheritance helps reduce coding
time by providing a convenient way of reusing code. For example, the NSButton class
defines data (or instance variables) and methods to create button objects of a certain type,
so a subclass of NSButton could be produced to create buttons of another type - which
may perhaps have a different border colour. Equally NSTextField can be used to define
a subclass that perhaps draws a different border, by reusing definitions and data in the
superclass.
Inheritance places all classes in a logical hierarchy or tree structure that may have the
NSObject class at its root. (The root object may be changed by the developer; in GNUstep

14 Objective-C GNUstep Base Programming Manual

it is NSObject, but in “plain” Objective-C it is a class called “Object” supplied with the
runtime.) All classes may have subclasses, and all except the root class do have superclasses.
When a class object creates a new instance, the new object holds the data for its class,
superclass, and superclasses extending to the root class (typically NSObject). Additional
data may be added to classes so as to provide specific functions and application logic.

When a new object is created, it is allocated memory space and its data in the form of its
instance variables are initialised. Every object has at least one instance variable (inherited
from NSObject) called isa, which is initialized to refer to the object’s class. Through this
reference, access is also afforded to classes in the object’s inheritance path.

In terms of source code, an Objective-C class definition has an:

• interface declaring instance variables, methods and the superclass name; and an

• implementation that defines the class in terms of operational code that implements the
methods.

Typically these entities are confined to separate files with .h and .m extensions for Interface
and Implementation files, respectively. However they may be merged into one file, and a
single file may implement multiple classes.

2.3.2 Inheritance of Methods

Each new class inherits methods and instance variables from another class. This results
in a class hierarchy with the root class at the core, and every class (except the root) has
a superclass as its parent, and all classes may have numerous subclasses as their children.
Each class therefore is a refinement of its superclass(es).

2.3.3 Overriding Methods

Objects may access methods defined for their class, superclass, superclass’ superclass, ex-
tending to the root class. Classes may be defined with methods that overwrite their name-
sakes in ancestor classes. These new methods are then inherited by subclasses, but other
methods in the new class can locate the overridden methods. Additionally redefined meth-
ods may include overridden methods.

2.3.4 Abstract Classes

Abstract classes or abstract superclasses such as NSObject define methods and instance
variables used by multiple subclasses. Their purpose is to reduce the development effort
required to create subclasses and application structures. When we get technical, we make a
distinction between a pure abstract class whose methods are defined but instance variables
are not, and a semi-abstract class where instance variables are defined).

An abstract class is not expected to actually produce functional instances since crucial parts
of the code are expected to be provided by subclasses. In practice, abstract classes may
either stub out key methods with no-op implementations, or leave them unimplemented
entirely. In the latter case, the compiler will produce a warning (but not an error).

Abstract classes reduce the development effort required to create subclasses and application
structures.

Chapter 2: The Objective-C Language 15

2.3.5 Class Clusters

A class cluster is an abstract base class, and a group of private, concrete subclasses. It
is used to hide implementation details from the programmer (who is only allowed to use
the interface provided by the abstract class), so that the actual design can be modified
(probably optimised) at a later date, without breaking any code that uses the cluster.

Consider a scenario where it is necessary to create a class hierarchy to define objects holding
different types including chars, ints, shorts, longs, floats and doubles. Of course, different
types could be defined in the same class since it is possible to cast or change them from one
to the next. Their allocated storage differs, however, so it would be inefficient to bundle
them in the same class and to convert them in this way.

The solution to this problem is to use a class cluster: define an abstract superclass that
specifies and declares components for subclasses, but does not declare instance variables.
Rather this declaration is left to its subclasses, which share the programmatic interface
that is declared by the abstract superclass.

When you create an object using a cluster interface, you are given an object of another
class - from a concrete class in the cluster.

2.4 NSObject: The Root Class

In GNUstep, NSObject is a root class that provides a base implementation for all objects,
their interactions, and their integration in the run-time system. NSObject defines the isa
instance variable that connects every object with its class.

In other Objective-C environments besides GNUstep, NSObject will be replaced by a differ-
ent class. In many cases this will be a default class provided with the Objective-C runtime.
In the GNU runtime for example, the base class is called Object. Usually base classes
define a similar set of methods to what is described here for NSObject, however there are
variations.

The most basic functions associated with the NSObject class (and inherited by all sub-
classes) are the following:

• allocate instances

• connect instances to their classes

In addition, NSObject supports the following functionality:

• initialize instances

• deallocate instances

• compare self with another object

• archive self

• perform methods selected at run-time

• provide reflective information at runtime to queries about declared methods

• provide reflective information at runtime to queries about position in the inheritance
hierarchy

• forward messages to other objects.

16 Objective-C GNUstep Base Programming Manual

2.4.1 The NSObject Protocol

In fact, the NSObject class is a bit more complicated than just described. In reality, its
method declarations are split into two components: essential and ancillary. The essential
methods are those that are needed by any root class in the GNUstep/Objective-C environ-
ment. They are declared in an “NSObject protocol” which should be implemented by any
other root class you define (see Chapter 4 [Protocols], page 31). The ancillary methods are
those specific to the NSObject class itself but need not be implemented by any other root
class. It is not important to know which methods are of which type unless you actually
intend to write an alternative root class, something that is rarely done.

2.5 Static Typing

Recall that the id type may be used to refer to any class of object. While this provides
for great runtime flexibility (so that, for example, a generic List class may contain objcts
of any instance), it prevents the compiler from checking whether objects implement the
messages you send them. To allow type checking to take place, Objective-C therefore also
allows you to use class names as variable types in code. In the following example, type
checking verifies that the myString object is an appropriate type.

// compiler verifies, if anObject’s type is known, that it is an NSString:
NSString *myString = anObject;
// now, compiler verifies that NSString declares an int ’length’ method:
int len = [myString length];

Note that objects are declared as pointers, unlike when id is used. This is because the
pointer operator is implicit for id. Also, when the compiler performs type checking, a
subclass is always permissible where any ancestor class is expected, but not vice-versa.

2.5.1 Type Introspection

Static typing is not always appropriate. For example, you may wish to store objects of
multiple types within a list or other container structure. In these situations, you can still
perform type-checking manually if you need to send an untyped object a particular message.
The isMemberOfClass: method defined in the NSObject class verifies that the receiver is
of a specific class:

if ([namedObject isMemberOfClass: specificClass] == YES)
{
// code here

}

The test will return false if the object is a member of a subclass of the specific class given -
an exact match is required. If you are merely interested in whether a given object descends
from a particular class, the isKindOfClass: method can be used instead:

if ([namedObject isKindOfClass: specificClass] == YES)
{
// code here

}

There are other ways of determining whether an object responds to a particular method,
as will be discussed in Chapter 5 [Advanced Messaging], page 49.

Chapter 2: The Objective-C Language 17

2.5.2 Referring to Instance Variables

As you will see later, classes may define some or all of their instance variables to be public
if they wish. This means that any other object or code block can access them using the
standard “->” structure access operator from C. For this to work, the object must be
statically typed (not referred to by an id variable).

Bar *bar = [foo getBar];
int c = bar->value * 2; // ’value’ is an instance variable

In general, direct instance variable access from outside of a class is not recommended pro-
gramming practice, aside from in exceptional cases where performance is at a premium.
Instead, you should define special methods called accessors that provide the ability to re-
trieve or set instance variables if necessary:

- (int) value
{

return value;
}

- (void) setValue: (int) newValue
{

value = newValue;
}

While it is not shown here, accessors may perform arbitrary operations before returning or
setting internal variable values, and there need not even be a direct correspondence between
the two. Using accessor methods consistently allows this to take place when necessary
for implementation reasons without external code being aware of it. This property of
encapsulation makes large code bases easier to maintain.

2.6 Working with Class Objects

Classes themselves are maintained internally as objects in their own right in Objective-C,
however they do not possess the instance variables defined by the classes they represent,
and they cannot be created or destroyed by user code. They do respond to class methods,
as in the following:

id result = [SomeClassName doSomething];

Classes respond to the class methods their class defines, as well as those defined by their
superclasses. However, it is not allowed to override an inherited class method.
You may obtain the class object corresponding to an instance object at runtime by a method
call; the class object is an instance of the “Class” class.

// all of these assign the same value
id stringClass1 = [stringObject class];
Class stringClass2 = [stringObject class];
id stringClass3 = [NSString class];

Classes may also define a version number (by overriding that defined in NSObject):
int versionNumber = [NSString version];

This facility allows developers to access the benefits of versioning for classes if they so
choose.

18 Objective-C GNUstep Base Programming Manual

2.6.1 Locating Classes Dynamically

Class names are about the only names with global visibility in Objective-C. If a class name
is unknown at compilation but is available as a string at run time, the GNUstep library
NSClassFromString function may be used to return the class object:

if ([anObject isKindOf: NSClassFromString("SomeClassName")] == YES)
{
// do something ...

}

The function returns Nil if it is passed a string holding an invalid class name. Class names,
global variables and functions (but not methods) exist in the same name space, so no two
of these entities may share the same name.

2.7 Naming Constraints and Conventions

The following lists the full uniqueness constraints on names in Objective-C.
• Neither gGlobal variables nor function names may share the same name as classes,

because all three entities are allocated the same (global) name space.
• A class may define methods using the same names as those held in other classes. (See

Chapter 2 [Overriding Methods], page 11 above.)
• A class may define instance variables using the same names as those held in other

classes.
• A class category may have the same name as another class category.
• An instance method and a class method may share the same name.
• A protocol may have the same name as a class, category, or any other entity.
• A method and an instance variable may share the same name.

There are also a number of conventions used in practice. These help to make code more
readable and also help avoid naming conflicts. Conventions are particularly important since
Objective-C does not have any namespace partitioning facilities like Java or other languages.
• Class, category and protocol names begin with an uppercase letter.
• Methods, instance variables, and variables holding instances begin with a lowercase

letter.
• Second and subsequent words in a name should begin with a capital letter, as in

“ThisIsALongName”, not “Thisisalongname”. As can be seen, this makes long names
more readable.

• Classes intended to be used as libraries (Frameworks, in NeXTstep parlance) should
utilize a unique two or three letter prefix. For example, the Foundation classes all begin
with ’NS’, as in “NSArray, and classes in the OmniFoundation from Omni Group (a
popular library for OpenStep) began with “OF”.

• Classes and methods intended to be used only be the developers maintaining
them should be prefixed by an underscore, as in “ SomePrivateClass” or
“ somePrivateMethod”. Capitalization rules should still be followed.

• Functions intended for global use should beging with a capital letter, and use prefixing
conventions as for classes.

Chapter 2: The Objective-C Language 19

2.8 Strings in GNUstep

Strings in GNUstep can be handled in one of two ways. The first way is the C approach of
using an array of char. In this case you may use the “STR” type defined in Objective-C in
place of char[].
The second approach is to rely on the NSString class and associated subclasses in the
GNUstep Base library, and compiler support for them. Using this approach allows use of
the methods in the NSString API. In addition, the NSString class provides the means to
initialize strings using printf-like formats.
The NSString class defines objects holding raw Unicode character streams or strings. Uni-
code is a 16-bit worldwide standard used to define character sets for all spoken languages.
In GNUstep parlance the Unicode character is of type unichar.

2.8.1 Creating NSString Static Instances

A static instance is allocated at compile time. The creation of a static instance of NSString
is achieved using the @"..." construct and a pointer:

NSString *w = @"Brainstorm";

Here, w is a variable that refers to an NSString object representing the ASCII string "Brain-
storm".

2.8.2 NSString +stringWithFormat:

The class method stringWithFormat: may also be used to create instances of
NSString, and broadly echoes the printf() function in the C programming language.
stringWithFormat: accepts a list of arguments whose processed result is placed in an
NSString that becomes a return value as illustrated below:

int qos = 5;
NSString *gprsChannel;

gprschannel = [NSString stringWithFormat: @"The GPRS channel is %d",
qos];

The example will produce an NSString called gprsChannel holding the string "The GPRS
channel is 5".
stringWithFormat: recognises the %@ conversion specification that is used to specify an
additional NSString:

NSString *one;
NSString *two;

one = @"Brainstorm";
two = [NSString stringWithFormat: @"Our trading name is %@", one];

The example assigns the variable two the string "Our trading name is Brainstorm." The %@
specification can be used to output an object’s description - as returned by the NSObject
-description method), which is useful when debugging, as in:

NSObject *obj = [anObject aMethod];

NSLog (@"The method returned: %@", obj);

../Reference/NSString.html

20 Objective-C GNUstep Base Programming Manual

2.8.3 C String Conversion

When a program needs to call a C library function it is useful to convert between NSStrings
and standard ASCII C strings (not fixed at compile time). To create an NSString using
the contents of the returned C string (from the above example), use the NSString class
method stringWithCString::

char *function (void);

char *result;
NSString *string;

result = function ();
string = [NSString stringWithCString: result];

To convert an NSString to a standard C ASCII string, use the cString method of the
NSString class:

char *result;
NSString *string;

string = @"Hi!";
result = [string cString];

2.8.4 NSMutableString

NSStrings are immutable objects; meaning that once they are created, they cannot be
modified. This results in optimised NSString code. To modify a string, use the subclass of
NSString, called NSMutableString. Use a NSMutableString wherever a NSString could
be used.
An NSMutableString responds to methods that modify the string directly - which is not
possible with a generic NSString. To create a NSMutableStringuse stringWithFormat::

NSString *name = @"Brainstorm";
NSMutableString *str;
str = [NSMutableString stringWithFormat: @"Hi!, %@", name];

While NSString’s implementation of stringWithFormat: returns a NSString,
NSMutableString’s implementation returns an NSMutableString.
Note. Static strings created with the @"..." construct are always immutable.

NSMutableStrings are rarely used because to modify a string, you normally create a new
string derived from an existing one.
A useful method of the NSMutableString class is appendString:, which takes an NSString
argument, and appends it to the receiver:

NSString *name = @"Brainstorm";
NSString *greeting = @"Hello";
NSMutableString *s;

s = AUTORELEASE ([NSMutableString new]);
[s appendString: greeting];
[s appendString: @", "];

Chapter 2: The Objective-C Language 21

[s appendString: name];

This code produces the same result as:

NSString *name = @"Brainstorm";
NSString *greeting = @"Hello";
NSMutableString *s;

s = [NSMutableString stringWithFormat: @"%@, %@", greeting, name];

2.8.5 Loading and Saving Strings

The the GNUstep Base library has numerous string manipulation features, and among
the most notable are those relating to writing/reading strings to/from files. To write the
contents of a string to a file, use the writeToFile:atomically: method:

#include <Foundation/Foundation.h>

int
main (void)
{
CREATE_AUTORELEASE_POOL(pool);
NSString *name = @"This string was created by GNUstep";

if ([name writeToFile: @"/home/nico/testing" atomically: YES])
{
NSLog (@"Success");

}
else
{
NSLog (@"Failure");

}
RELEASE(pool);
return 0;

}

writeToFile:atomically: returns YES for success, and NO for failure. If the atomically
flag is YES, then the library first writes the string into a file with a temporary name, and,
when the writing has been successfully done, renames the file to the specified filename. This
prevents erasing the previous version of filename unless writing has been successful. This is
a useful feature, which should be enabled.

To read the contents of a file into a string, use stringWithContentsOfFile:, as shown in
the following example that reads @"/home/Brainstorm/test":

#include <Foundation/Foundation.h>

int
main (void)
{
CREATE_AUTORELEASE_POOL(pool);
NSString *string;

22 Objective-C GNUstep Base Programming Manual

NSString *filename = @"/home/nico/test";

string = [NSString stringWithContentsOfFile: filename];
if (string == nil)
{
NSLog (@"Problem reading file %@", filename);
/*
* <missing code: do something to manage the error...>
* <exit perhaps ?>
*/

}

/*
* <missing code: do something with string...>
*/

RELEASE(pool);
return 0;

}

Chapter 3: Working with Objects 23

3 Working with Objects

Objective-C and GNUstep provide a rich object allocation and memory management frame-
work. Objective-C affords independent memory allocation and initialization steps for ob-
jects, and GNUstep supports three alternative schemes for memory management.

3.1 Initializing and Allocating Objects

Unlike most object-oriented languages, Objective-C exposes memory allocation for objects
and initialization as two separate steps. In particular, every class provides an ’+alloc’
method for creating blank new instances. However, initialization is carried out by an in-
stance method, not a class method. By convention, the default initialization method is
’-init’. The general procedure for obtaining a newly initialized object is thus:

id newObj = [[SomeClass alloc] init];

Here, the call to alloc returns an uninitialized instance, on which init is then invoked.
(Actually, alloc does set all instance variable memory to 0, and it initializes the special
isa variable mentioned earlier which points to the object’s class, allowing it to respond to
messages.) The alloc and init calls may be collapsed for convenience into a single call:

id newObj = [SomeClass new];

The default implementation of new simply calls alloc and init as above, however other
actions are possible. For example, new could be overridden to reuse an existing object
and just call init on it (skipping the alloc step). (Technically this kind of instantiation
management can be done inside init as well – it can deallocate the receiving object and
return another one in its place. However this practice is not recommended; the new method
should be used for this instead since it avoids unnecessary memory allocation for instances
that are not used.)

3.1.1 Initialization with Arguments

In many cases you want to initialize an object with some specific information. For example
a Point object might need to be given an x, y position. In this case the class may define
additional initializers, such as:

id pt = [[Point alloc] initWithX: 1.5 Y: 2.0];

Again, a new method may be defined, though sometimes the word “new” is not used in the
name:

id pt = [Point newWithX: 1.5 Y: 2.0];
// alternative

id pt = [Point pointAtX: 1.5 Y: 2.0];

In general the convention in Objective-C is to name initializers in a way that is intuitive for
their classes. Initialization is covered in more detail in Chapter 4 [Instance Initialization],
page 31. Finally, it is acceptable for an init... method to return nil at times when
insufficient memory is available or it is passed an invalid argument; for example the argument
to the NSString method initWithContentsOfFile: may be an erroneous file name.

24 Objective-C GNUstep Base Programming Manual

3.1.2 Memory Allocation and Zones

Memory allocation for objects in GNUstep supports the ability to specify that memory is
to be taken from a particular region of addressable memory. In the days that computer
RAM was relatively limited, it was important to be able to ensure that parts of a large
application that needed to interact with one another could be held in working memory at
the same time, rather than swapping back and forth from disk. This could be done by
specifying that particular objects were to be allocated from a particular region of memory,
rather than scattered across all of memory at the whim of the operating system. The OS
would then keep these objects in memory at one time, and swap them out at the same
time, perhaps to make way for a separate portion of the application that operated mostly
independently. (Think of a word processor that keeps structures for postscript generation
for printing separate from those for managing widgets in the onscreen editor.)

With the growth of computer RAM and the increasing sophistication of memory manage-
ment by operating systems, it is not as important these days to control the regions where
memory is allocated from, however it may be of use in certain situations. For example, you
may wish to save time by allocating memory in large chunks, then cutting off pieces yourself
for object allocation. If you know you are going to be allocating large numbers of objects
of a certain size, it may pay to create a zone that allocates memory in multiples of this
size. The GNUstep/Objective-C mechanisms supporting memory allocation are therefore
described here.

The fundamental structure describing a region of memory in GNUstep is called a Zone, and
it is represented by the NSZone struct. All NSObject methods dealing with the allocation of
memory optionally take an NSZone argument specifying the Zone to get the memory from.
For example, in addition to the fundamental alloc method described above, there is the
allocWithZone: method:

+ (id) alloc;
+ (id) allocWithZone: (NSZone*)zone;

Both methods will allocate memory to hold an object, however the first one automatically
takes the memory from a default Zone (which is returned by the NSDefaultMallocZone()
function). When it is necessary to group objects in the same area of memory, or allocate
in chunks - perhaps for performance reasons, you may create a Zone from where you would
allocate those objects by using the NSCreateZone function. This will minimise the paging
required by your application when accessing those objects frequently.

Low level memory allocation is performed by the NSAllocateObject() function. This
is rarely used but available when you require more advanced control or performance.
This function is called by [NSObject +allocWithZone:]. However, if you call
NSAllocateObject() directly to create an instance of a class you did not write, you may
break some functionality of that class, such as caching of frequently used objects.

Other NSObject methods besides alloc that may optionally take Zones include -copy and
-mutableCopy. For 95% of cases you will probably not need to worry about Zones at all;
unless performance is critical, you can just use the methods without zone arguments, that
take the default zone.

Chapter 3: Working with Objects 25

3.1.3 Memory Deallocation

Objects should be deallocated from memory when they are no longer needed. While there
are several alternative schemes for managing this process (see next section), they all even-
tually resort to calling the NSObject method -dealloc, which is more or less the opposite
of -alloc. It returns the memory occupied by the object to the Zone from which it was
originally allocated. The NSObject implementation of the method deallocates only instance
variables. Additional allocated, unshared memory used by the object must be deallocated
separately. Other entities that depend solely on the deallocated receiver, including complete
objects, must also be deallocated separately. Usually this is done by subclasses overriding
-dealloc (see Chapter 4 [Instance Deallocation], page 31).

As with alloc, the underlying implementation utilizes a function (NSDeallocateObject())
that can be used by your code if you know what you are doing.

3.2 Memory Management

In an object-oriented environment, ensuring that all memory is freed when it is no longer
needed can be a challenge. To assist in this regard, there are three alternative forms of
memory management available in Objective-C:

− Explicit
You allocate objects using alloc, copy etc, and deallocate them when you have finished
with them (using dealloc). This gives you complete control over memory management,
and is highly efficient, but error prone.

− Retain count
You use the OpenStep retain/release mechanism, along with autorelease pools which
provide a degree of automated memory management. This gives a good degree of
control over memory management, but requires some care in following simple rules.
It’s pretty efficient.

− Garbage collection
You build the GNUstep base library with garbage collection, and link with the Boehm
GC library . . . then never bother about releasing/deallocating memory. This requires
a slightly different approach to programming . . . you need to take care about what
happens when objects are deallocated . . . but don’t need to worry about deallocating
them.

The recommended approach is to use some standard macros defined in NSObject.h which
encapsulate the retain/release/autorelease mechanism, but which permit efficient use of
the garbage collection system if you build your software with that. We will justify this
recommendation after describing the three alternatives in greater detail.

3.2.1 Explicit Memory Management

This is the standard route to memory management taken in C and C++ programs. As in
standard C when using malloc, or in C++ when using new and delete, you need to keep
track of every object created through an alloc call and destroy it by use of dealloc when
it is no longer needed. You must make sure to no longer reference deallocated objects;
although messaging them will not cause a segmentation fault as in C/C++, it will still lead
to your program behaving in unintended ways.

26 Objective-C GNUstep Base Programming Manual

This approach is generally not recommended since the Retain/Release style of memory
management is significantly less leak-prone while still being quite efficient.

3.2.2 OpenStep-Style (Retain/Release) Memory Management

The standard OpenStep system of memory management employs retain counts. When an
object is created, it has a retain count of 1. When an object is retained, the retain count
is incremented. When it is released the retain count is decremented, and when the retain
count goes to zero the object gets deallocated.

Coin *c = [[Coin alloc] initWithValue: 10];

// Put coin in pouch,
[c retain]; // Calls ’retain’ method (retain count now 2)
// Remove coin from pouch

[c release]; // Calls ’release’ method (retain count now 1)
// Drop in bottomless well

[c release]; // Calls ’release’ ... (retain count 0) then ’dealloc’

One way of thinking about the initial retain count of 1 on the object is that a call to alloc
(or copy) implicitly calls retain as well. There are a couple of default conventions about
how retain and release are to be used in practice.
• If a block of code causes an object to be allocated, it “owns” this object and is responsible

for releasing it. If a block of code merely receives a created object from elsewhere, it is
not responsible for releasing it.

• More generally, the total number of retains in a block should be matched by an equal
number of releases.

Thus, a typical usage pattern is:
NSString *msg = [[NSString alloc] initWithString: @"Test message."];
NSLog(msg);
// we created msg with alloc -- release it

[msg release];

Retain and release must also be used for instance variables that are objects:
- (void)setFoo:(FooClass *newFoo)
{

// first, assert reference to newFoo
[newFoo retain];
// now release reference to foo (do second since maybe newFoo == foo)

[foo release];
// finally make the new assignment; old foo was released and may
// be destroyed if retain count has reached 0

foo = newFoo;
}

Because of this retain/release management, it is safest to use accessor methods to set
variables even within a class:

- (void)resetFoo
{

Chapter 3: Working with Objects 27

FooClass *foo = [[FooClass alloc] init];
[self setFoo: foo];
// since -setFoo just retained, we can and should
// undo the retain done by alloc

[foo release];
}

Exceptions

In practice, the extra method call overhead should be avoided in performance critical areas
and the instance variable should be set directly. However in all other cases it has proven
less error-prone in practice to consistently use the accessor.
There are certain situations in which the rule of having retains and releases be equal in a
block should be violated. For example, the standard implementation of a container class
retains each object that is added to it, and releases it when it is removed, in a separate
method. In general you need to be careful in these cases that retains and releases match.

3.2.2.1 Autorelease Pools

One important case where the retain/release system has difficulties is when an object needs
to be transferred or handed off to another. You don’t want to retain the transferred object
in the transferring code, but neither do you want the object to be destroyed before the
handoff can take place. The OpenStep/GNUstep solution to this is the autorelease pool.
An autorelease pool is a special mechanism that will retain objects it is given for a limited
time – always enough for a transfer to take place. This mechanism is accessed by calling
autorelease on an object instead of release. Autorelease first adds the object to the
active autorelease pool, which retains it, then sends a release to the object. At some
point later on, the pool will send the object a second release message, but by this time
the object will presumably either have been retained by some other code, or is no longer
needed and can thus be deallocated. For example:

- (NSString *) getStatus
{
NSString *status =
[[NSString alloc] initWithFormat: "Count is %d", [self getCount]];
// set to be released sometime in the future
[status autorelease];
return status;

}

Any block of code that calls -getStatus can also forego retaining the return value if it just
needs to use it locally. If the return value is to be stored and used later on however, it
should be retained:

...
NSString *status = [foo getStatus];
// ’status’ is still being retained by the autorelease pool

NSLog(status);
return;
// status will be released automatically later

...

28 Objective-C GNUstep Base Programming Manual

currentStatus = [foo getStatus];
// currentStatus is an instance variable; we do not want its value
// to be destroyed when the autorelease pool cleans up, so we
// retain it ourselves

[currentStatus retain];

Convenience Constructors

A special case of object transfer occurs when a convenience constructor is called (instead of
alloc followed by init) to create an object. (Convenience constructors are class methods
that create a new instance and do not start with “new”.) In this case, since the convenience
method is the one calling alloc, it is responsible for releasing it, and it does so by calling
autorelease before returning. Thus, if you receive an object created by any convenience
method, it is autoreleased, so you don’t need to release it if you are just using it temporarily,
and you DO need to retain it if you want to hold onto it for a while.

- (NSString *) getStatus
{

NSString *status =
[NSString stringWithFormat: "Count is %d", [self getCount]];

// ’status’ has been autoreleased already
return status;

}

Pool Management

An autorelease pool is created automatically if you are using the GNUstep GUI classes,
however if you are just using the GNUstep Base classes for a nongraphical application, you
must create and release autorelease pools yourself:

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

Once a pool has been created, any autorelease calls will automatically find it. To close out
a pool, releasing all of its objects, simply release the pool itself:

[pool release];

To achieve finer control over autorelease behavior you may also create additional pools and
release them in a nested manner. Calls to autorelease will always use the most recently
created pool.

Finally, note that autorelease calls are significantly slower than plain release. Therefore
you should only use them when they are necessary.

3.2.2.2 Avoiding Retain Cycles

One difficulty that sometimes occurs with the retain/release system is that cycles can arise
in which, essentially, Object A has retained Object B, and Object B has also retained
Object A. In this situation, neither A nor B will ever be deallocated, even if they become
completely disconnected from the rest of the program. In practice this type of situation
may involve more than two objects and multiple retain links. The only way to avoid such
cycles is to be careful with your designs. If you notice a situation where a retain cycle could
arise, remove at least one of the links in the chain, but not in such a way that references to
deallocated objects might be mistakenly used.

Chapter 3: Working with Objects 29

3.2.2.3 Summary

The following summarizes the retain/release-related methods:
Method Description
-retain increases the reference count of an object by 1
-release decreases the reference count of an object by 1
-autorelease decreases the reference count of an object by 1 at some stage in

the future
+alloc and
+allocWithZone:

allocates memory for an object, and returns it with retain count
of 1

-copy, -mutableCopy,
copyWithZone: and -
mutableCopyWithZone:

makes a copy of an object, and returns it with retain count of 1

-init and any
method whose name
begins with init

initialises the receiver, returning the retain count unchanged. -
init has had no effect on the reference count.

-new and any method
whose name begins
with new

allocates memory for an object, initialises it, and returns the
result.

-dealloc deallocates object immediately (regardless of value of retain count)
convenience
constructors

allocate memory for an object, and returns it in an autoreleased
state (retain=1, but will be released automatically at some stage
in the future). These constructors are class methods whose name
generally begins with the name of the class (initial letter converted
to lowercase).

The following are the main conventions you need to remember:
• If a unit of code allocates, retains, or copies an object, the same unit, loosely speaking,

is responsible for releasing or autoreleasing it at some future point. It is best to balance
retains and releases within each individual block of code.

• If you receive an autoreleased object, it will normally remain valid for the rest of the
current method call and can even be returned as the result of the method. If you need
to store it away for future use (e.g. as an instance variable), you must retain it.

• The retain counts mentioned are guidelines only ... more sophisticated classes often
perform caching and other tricks, so that +alloc methods may retain an instance from
a cache and return it, and -init methods may release their receiver and return a
different object (possibly obtained by retaining a cached object). In these cases, the
retain counts of the returned objects will obviously differ from the simple examples,
but the ownership rules (how you should use the returned values) remain the same.

3.2.3 Garbage Collection Based Memory Management

The GNUstep system can be optionally compiled with a memory sweeping garbage
collection mechanism using the Boehm conservative garbage collection library
(http://www.hpl.hp.com/personal/Hans_Boehm/gc). In this case, you need not worry
about retaining and releasing objects; the garbage collector will automatically track which
objects are still referred to at any given point within the program, and which are not.
Those that are not are automatically deallocated. The situation is largely similar to

http://www.hpl.hp.com/personal/Hans_Boehm/gc

30 Objective-C GNUstep Base Programming Manual

programming in Java, except that garbage collection will only be triggered during memory
allocation requests and will be less efficient since pointers in C are not always explicitly
marked.
Whether in Java or Objective-C, life is still not completely worry-free under garbage col-
lection however. You still must “help the garbage collector along” by explicitly dropping
references to objects when they become unneeded. Failing to do this is easier than you
might think, and leads to memory leaks.
When GNUstep was compiled with garbage collection, the macro flag GS_WITH_GC will be
defined, which you can use in programs to determine whether you need to call retain,
release, etc.. Rather than doing this manually, however, you may use special macros in
place of the retain and release method calls. These macros call the methods in question
when garbage collection is not available, but do nothing when it is.
Macro Functionality

RETAIN(foo); [foo retain];

RELEASE(foo); [foo release];

AUTORELEASE(foo); [foo autorelease];

ASSIGN(foo, bar); [bar retain]; [foo release]; foo = bar;

ASSIGNCOPY(foo,
bar);

[foo release]; foo = [bar copy];

DESTROY(foo); [foo release]; foo = nil;

In the latter three “convenience” macros, appropriate nil checks are made so that no
retain/release messages are sent to nil.
Some authorities recommend that you always use the RETAIN/RELEASE macros in place
of the actual method calls, in order to allow running in a non-garbage collecting GNUstep
environment yet also save unneeded method calls in the case your code runs in a garbage
collecting enviromnent. On the other hand, if you know you are always going to be running
in a non-garbage collecting environment, there is no harm in using the method calls, and if
you know you will always have garbage collection available you can save development effort
by avoiding any use of retain/release or RETAIN/RELEASE.

3.2.4 Current Recommendations

As of May 2004 the garbage collection in GNUstep was still considered beta quality (some
bugs exist). In the OS X world, Apple’s Cocoa does not employ garbage collection, and it
is not clear whether there are plans to implement it. Therefore the majority of GNUstep
programmers use the RETAIN/RELEASE approach to memory management.

Chapter 4: Writing New Classes 31

4 Writing New Classes

Objective-C class definitions are always divided into two parts: an interface and an im-
plementation. This division mirrors the common C library division into a header file with
function declarations, which is distributed to all users of a library, and a source file with the
implementations, which is only used to compile the library and is generally not distributed
to users. A class interface declares instance variables, methods and the superclass name,
while the implementation file holds the operational code that implements those methods.
Typically the interface and implementation are held in separate files, using the .h and .m
extensions, respectively. They may, however, be merged into one file, and a single file may
implement many classes.

4.1 Interface

The interface is included in the source using #include:
#include "SomeClass.h"

To ensure that a Header file is included only once, it is usual to protect it with pre-compiler
defines:

#ifndef _MY_CLASS_H_INCLUDED
#define _MY_CLASS_H_INCLUDED

/* HEADER FILE */
#endif

This is the standard C technique to protect header files from being included more than once.
A cleaner alternative, introduced in Objective-C, is to use the #import directive instead
of #include. The compiler will automatically include #imported files no more than once,
even if multiple import statements are encountered. Thus, you can do away with the messy
preprocessor conditionals in the header file.
You should be careful, however, to only use #import for Objective-C interface headers, and
continue using #include for standard C files. It is possible, though not likely, that regular
C headers may rely on being included multiple times in some cases. Also, you may need
to include the compiler directive -Wno-import to gcc to avoid a didactic warning to this
effect.

4.1.1 Interface Capabilities

The interface file declares new classes that can be used by source code, holding all the
information necessary to use the classes from other Objective-C code. Firstly, the file reveals
to the programmer the position of the class in the class hierarchy by defining exactly which
is the superclass. Secondly, it informs programmers of what variables are inherited when
they create subclasses. Finally, the interface file may inform other software entities of the
messages that can be sent to the class object and to the instances of the class.
Interface files use the .h extension as for ordinary C header files. (If you use emacs, put a
line “// -*-ObjC-*-” at the top of your file to use the correct mode.)
Here is an example of a class interface declaration:

#import <Foundation/NSObject.h>

32 Objective-C GNUstep Base Programming Manual

@interface Point : NSObject
{
@private

// instance variables only accessible to instances of this class ...
@protected

// instance variables accessible to instances of this class or subclasses
float x;
float y;

@public
// instance variables accessible by all code ...

}

// class methods
+ (id) new;
+ (id) newWithX: (float)x0 Y: (float)y0;
+ (Point*) point;
+ (Point*) pointWithX: (float)x0 Y: (float)y0;

// instance methods
- (id) init;
- (id) initWithX: (float)x0 Y: (float)y0;
- (float) x; // (field accessor)
- (float) y;
- (void) setX: (float)newX;
- (void) setY: (float)newY;
@end

• The interface file should import the interface of the superclass of the class it is defining.

• The interface is enclosed between the compiler directives @interface and @end.

• @interface Point : Object names the class and links it to the superclass. If no su-
perclass is named, and the directive is without a colon, the compiler assumes that a
root class is being created. You more than likely don’t want to do this.

• Braces enclose declared instance variables; each class’s instance will have all these
instance variables including instance variables inherited from the superclass, and from
the superclass of the superclass, extending to the root class.

• Instance variables may be declared as private, protected, or public. An instance’s
private variables may only be accessed by instances of this class. An instance’s protected
variables may be accessed by instances of this class or instances of subclasses of this
class. Public variables may be accessed by any code. This is analogous to the usage
in C++ and Java. If you do not mark your instance variable declaration explicitly, it is
made protected by default.

• Method declarations that begin with a "+" sign are class methods, and are defined
for the class object. Thus, you can call them without creating an instance, and their
implementations do not have access to any instance variables. A class object inherits
class methods from superclasses.

Chapter 4: Writing New Classes 33

• Method declarations that begin with a "-" sign are instance methods, and are defined
for class instances. Class instances inherit instance methods from superclasses.

• A method may share the name of an instance variable.
• A method return type is declared using the C syntax for type casts:

- (float) x;

which is a method returning a float.
• Argument types can be declared in the same way as method return types:

- (void) setX: (float)newX;

which is a method that returns nothing, and takes a single float as its argument.
Note. The default type for methods and messages (id) is assumed when a return
or argument type is not explicitly declared. For example, ’-name’ implicitly means a
method returning id (i.e. an object). It is usually better to avoid this and use explicit
typing as in

- (NSString*) name;

4.1.2 Including Interfaces

Source code (including Objective-C implementation and interface files) may integrate inter-
faces using #import (or #include). Thereafter the source module may utilize the classes
in those interfaces so as to:

• Make instances of them.
• Send messages to invoke methods declared for them.
• Refer to instance variables in them.

With the exception of the root class, all working interfaces integrate a superclass using
either #import or #include – as was seen in the previous simplified interface file example.
As a result the vast majority of class files begin with a standard form that includes their
superclasses, and thus places them in the class hierarchy:

#import "SomeSuperclass.h"

@interface SomeClass : SomeSuperclass
{
// instance variables ...

}
// method declarations ...

@end

4.1.3 Referring to Classes - @class

It is possible for a source module to refer to classes without including their interface files.
This is useful when you just need to tell the compiler that a certain word is a class name,
but you want to avoid the overhead of including the whole interface file for that class.

For example, to inform the compiler that Border and Square are classes without including
their full interface file, the following syntax is used:

@class Border, Square;

34 Objective-C GNUstep Base Programming Manual

Class names may also appear in interface files at times when instance variables, return
values and arguments are statically typed:

#import "Foundation/NSObject.h"

@class Point

@interface Square : NSObject
{
@protected
Point *lowerLeft;
float sideLength;

}
+ (id) newWithLowerLeft: (Point *)lowerLeft sideLength: (float)sideLength;

- (id) initWithLowerLeft: (Point *)lowerLeft sideLength: (float)sideLength;

- (Point *) lowerLeft;
- (float) sideLength;
- (void) setLowerLeft: (Point *)newLowerLeft;
- (void) setSideLength: (float)newSideLength;
@end

Here, we see the Point class we declared earlier being used as a component in Square’s
definition. Because this class is only referred to here to declare variables and method
signatures, it suffices to reference it only using the @class directive. On the other hand,
the implementation file may need to send messages to Point instances and would be better
of importing the interface in this case.

The compiler will produce a warning if you don’t include it, and no type checking can
be performed (to see if class instances respond to the messages you send to them), but
compilation will succeed. It is best to take advantage of type-checking when you can,
however, and include interfaces that messages are to be sent to.

There is one situation where you must include the interface however. If you are implement-
ing a new class, you always need to include the interface of the superclass; @class cannot
be used in this case because the compiler needs to know the details of the superclass and
its instance variables etc., so as to create a fully working new class. If you try using @class
in this situation, compilation will abort.

4.2 Implementation

An interface file declares a class, while an implementation file implements it. The separa-
tion between the interface and implementation file yields a black box concept where the
programmer using the class need only be concerned with the interface and its declared
methods, superclasses, and instance variables. The implementation of classes is transparent
to the programmer who may use them without detailed knowledge of their structures.

Implementation files use the .m extension, to distinguish them from ordinary C files.

Chapter 4: Writing New Classes 35

4.2.1 Writing an Implementation

An implementation file contents are encapsulated between @implementation and @end di-
rectives:

#import "Point.h"
@implementation Point
// method implementations
+ (id)new
{
// statements ...

}

+ (id)newWithX: (float)x Y: (float)y
{
// statements ...

}

// ...

- (void)setY: (float)newY
{
// statements ...

}

@end

The implementation file uses #import to include a named interface file holding all decla-
rations. Then it places method implementations for the class between @implementation
and @end directives. Each method declared in the interface must be implemented. Instance
variables may be referred to in instance methods (the ones with a “-” in front of them) but
not class methods (the ones with a “+”).

- (float) x
{
return x;

}

- (void) setX: (float)newX
{
x = newX;

}

4.2.2 Super and Self

To assist in writing instance methods, Objective-C provides the two reserved words self
and super. Self is used to refer to the current instance, and is useful for, among other
things, invoking other methods on the instance:

- (Foo *) foo
{

36 Objective-C GNUstep Base Programming Manual

if (![self fooIsInitialized])
[self initializeFoo];

return foo;
}

Super is used to refer to method implementations in the superclass of the instance. It
is useful when overriding methods and when writing initializers, as discussed in the next
section.

4.2.3 Instance Initialization

Instance initialization is one of the trickier aspects of getting started in Objective-C. Recall
that instances of a class are created by use of the class alloc method (inherited from
NSObject) but are initialized by instance methods. This works a little differently than in
C++ and Java, where constructors are special methods that are neither class nor instance
methods. In particular, since initializer methods are inherited instance methods, they may
still be called even if you have not implemented them in your class. For example, it is
always valid to invoke

SomeComplexClass *c = [[SomeComplexClass alloc] init];

Even if you have not implemented init in SomeComplexClass, the superclass’s imple-
mentation will be invoked, or, ultimately, NSObject’s if no other ancestors implement it.
Obviously, this could result in some of SomeComplexClass’s internal state being left unini-
tialized. For this reason, you should always either provide an init implementation, or
document whether it should be used. We will return to this concern below.
Typically, a class will also provide one or more initWith... methods for initialization with
arguments, and it may optionally also provide +new methods and convenience class methods
that act like constructors. The general approach to implementing these is illustrated here
for the Point class.

+ new
{
Point *point;

// note "self" refers to the "Point" _class_ object!
point = [[self allocWithZone: NSDefaultMallocZone()] init];
return point;

}

+ newWithX: (float)x0 Y: (float)y0
{
Point *point;

point = [[self allocWithZone: NSDefaultMallocZone()] initWithX: x Y: y];
return point;

}

+ point
{
Point *point;

Chapter 4: Writing New Classes 37

// note "self" refers to the "Point" _class_ object!
point = [self new];
return AUTORELEASE(point);

}

+ pointWithX: (float)x0 Y: (float)y0
{
Point *point;

point = [self newWithX: x Y: y];
return AUTORELEASE(point);

}

- init
{
return [self initWithX: 0.0 Y: 0.0];

}

// this is the "designated" initializer
- initWithX: (float)x0 Y: (float)y0
{
self = [super init];
if (self != nil)
{
x = x0;
y = y0;

}
return self;

}

Notice that, first, the convenience constructors (new and newWithX:Y:) execute [self
allocWithZone:] to begin with. The “self” here refers to the class object, since it is
used inside a class method. Thus the effect is the same as if “[Point alloc]” had been ex-
ecuted in external code. Second, notice that the other convenience constructors (point and
pointWithX:Y:) autorelease the new instance before returning it. This is to follow the rules
of memory management discussed in Chapter 3 [Memory Management], page 23. Third,
note that the new.. methods each call a corresponding init... method. It is not necessary
to maintain such a one to one correspondence but it is a common convention to have the
convenience implementations rely on instance init methods as shown. Fourth, note that
the use of [self allocWithZone: NSDefaultMallocZone()] rather than [self alloc] is
generally unnecessary, but provides a slight efficiency gain since +alloc is implemented by
calling +allocWithZone: on the default zone.

Designated Initializer

Finally, notice that the initWithX:Y: method is marked as the “designated” initializer.
This concept is important to ensure proper initialization for classes within a hierarchy. The
designated initializer should be the one with the most control over the nature of the new

38 Objective-C GNUstep Base Programming Manual

instance, and should be the one that all other initializers “ground out” in. In other words,
all other initializers should be chained so that they either call the designated initializer, or
they call another initializer that (eventually) calls it.
The importance of having a designated initializer is this: when a subclass is created, it
need only override the designated initializer to ensure that all of its instances are properly
initialized. If this is not done, external code could invoke an initializer that initializes
only the superclass’s instance variables, and not the subclass’s. To avoid this, each class
designates a “ground out” initializer to which other initializers ultimately delegate. Then
the subclass overrides this initializer, and in its own designated initializer, makes a call to
it, to ensure that the superclass is initialized properly. Thus:

@implementation SuperClass
- initWithA: (int)a
{
return [self initWithA:a B:0]; // 0 is default value

}

// designated init for SuperClass
- initWithA: (int)a B: (int)b
{
self = [super init];
myA = a;
myB = b;
return self;

}
@end

@implementation SubClass

// overrides SuperClass’s designated init
- initWithA: (int)a B: (int)b
{
return [self initWithA: (int)a B: (int)b C: (int)c];

}

// designated init for SubClass
- initWithA: (int)a B: (int)b C: (int)c
{
self = [super initWithA: a B: b];
myC = c;
return self;

}
@end

Note, as shown above, unlike in some other object-oriented languages, ’self’ is a variable
that can be redefined. For example, we could have written the new constructor above like
this:

{

Chapter 4: Writing New Classes 39

self = [[self alloc] init];
// note "self" now refers to the new instance!

[self setX: 1.0];
return self;

}

Another point to note is that Objective-C does not enforce calling superclass initializers
before carrying out subclass initialization. Although above the first call in the designated
initializer was always [super ...], this was not required, and if you need to set something
up before super acts, you are free to do so.

4.2.4 Flexible Initialization

As mentioned before, it is possible for an initialization process to, if desired, return not a
new object but an existing object. This may be done in one of two ways. If you are doing
it from a convenience class method like new, then use something like the following:

+ new
{
if (singleton == nil)
singleton = [[self alloc] init];

return singleton;
}

Note this example presupposes the existence of a class variable, ’singleton’. Class variables
as such don’t exist in Objective-C but can be simulated, as discussed below.
If you want to possibly return an existing instance from an init instance method like init,
the procedure is slightly more complicated:

- init
{
if (singleton != nil)
{
RELEASE(self);
self = RETAIN(singleton);

}
else
{
singleton = self;

}
return self;

}

Here, we explicitly deallocate the current instance and replace it with the desired existing
instance. Because this might happen, you should always be careful to use the returned
value from an init method:

id anObject = [SomeClass alloc];
// this is bad:

[anObject init];
// anObject might have been deallocated!
// do this instead:

40 Objective-C GNUstep Base Programming Manual

anObject = [anObject init];

One scenario where this actually occurs in the GNUstep libraries is with the class
NSConnection. It only permits one connection to exist between any two ports, so if you
call initWithReceivePort:sendPort: when a connection for the ports exists, the method
will deallocate the newly allocated instance, and return the current conflicting object,
rather than the receiver.

In general, it is better to catch this type of requirement in a “new” class method rather
than an instance “init” method so as to avoid the unnecessary allocation of instances that
will not be used, however this is not always possible given other design constraints.

4.2.5 Instance Deallocation

As described in Chapter 3 [Memory Management], page 23, objects should be deallocated
when they are no longer needed. When garbage collection is not being used, this is done
through explicit calls to the dealloc method. When GC is being used, dealloc is still
called implicitly, and should be implemented. However the tasks of the dealloc method
are fewer in this case.

When garbage collection is not active, the dealloc method must release all other objects
that this instance has retained. Usually these are those instance variables that are objects
rather than primitive types. In certain cases such as container classes, other objects must
be released as well. In addition, if the instance has acquired any external resources, such as
a network connection or open file descriptor, these should be relinquished as well. Likewise,
any memory that has been directly allocated through use of malloc or other functions
should be released.

When garbage collection is active, the dealloc method is still responsible to relinquish
external resources, but other GNUstep objects need not be released, since they will be
garbage collected once this instance has been.

If you cannot be sure whether your class will be running in a garbage-collecting environment,
it never hurts to execute all of the releases of other objects. This will not harm the operation
of the garbage collector, though it will result in pointless calls to the retain/release methods
that are stubbed out under garbage collection. If this could cause a performance hit in your
application, you should use the RETAIN/RELEASE macros instead of the function calls.

Here is an example of a dealloc implementation:

- dealloc
{
RELEASE(anInstanceVariableObject);
NSZoneFree(NULL, myMemory);
[super dealloc];

}

Here, we use the RELEASE macro to release an instance variable, and the NSZoneFree func-
tion to free memory that was earlier allocated with NSZoneMalloc or a related function.
(See Chapter 8 [Base Library], page 83 for discussion of GNUstep’s raw memory allocation
functions.) The NULL used indicates that the memory was from the default zone, and is
equivalent to saying ’NSDefaultMallocZone()’ instead.

Chapter 4: Writing New Classes 41

Finally, notice we end with a call to [super dealloc]. This should always be done in
dealloc implementations, and you should never concern yourself with deallocating struc-
tures that are associated with a superclass, since it will take care of this itself.

4.3 Protocols

Protocols in Objective-C provide a level of flexibility beyond class structure in determining
what messages objects respond to. They are similar to interfaces in Java but more flexible.

There are two types of protocol in Objective-C: informal protocols, where we document
methods to which objects will respond, and specify how they should behave, and formal
protocols, where we provide a list of methods that an object will support in a format where
the compiler can check things, and the runtime can also check that an object conforms to
the protocol. Informal protocols are merely convention, but are useful where we want to say
that some system will work as long as it (or its delegate) implements some subset of a group
of methods. Formal protocols are of more use when we want the compiler or runtime to
check that an object implements all of a group of methods itself. Formal protocols form an
inheritance hierarchy like classes, and a given class may conform to more than one protocol.
Thus, formal protocols are identical in many respects to Java interfaces.

As in Java, a particularly important use of protocols is in defining the methods that an
object in a remote process can respond to . . . by setting the protocol used by a local proxy
object, you can avoid having to send messages to the remote process to check what methods
are available - you can simply check the local protocol object. This will be covered later in
Chapter 7 [Distributed Objects], page 63.

Informal protocols are closely associated with Categories, another Objective-C language
facility, and will be discussed in the next section.

4.3.1 Declaring a Formal Protocol

A formal protocol is declared as a series of method declarations, just like a class interface.
The difference is that a protocol declaration begins with @protocol rather than @interface,
and has an optional super protocol specified in angle brackets.

@protocol List
- (void) add: (id) item;
- (void) remove: (id) item;
- getAtIndex: (int)idx;
- (void) clear;
@end

@protocol LinkedList <List>
- (void) addFirst: (id)item;
- (void) addLast: (id)item;
- getFirst;
- getLast;
@end

42 Objective-C GNUstep Base Programming Manual

4.3.2 Implementing a Formal Protocol

If you want your class to conform to a protocol, you declare it in your interface, and
implement the methods in your declaration:

@interface BiQueue <LinkedList>
{
// instance variables ...

}
// method declarations ...
// [don’t need to redeclare those for the LinkedList protocol]

- takeFirst
- takeLast
@end

...

@implementation BiQueue
// must implement both List’s and LinkedList’s methods ...

- add: (id) item
{
// ...

}

- addFirst: (id)item
{
// ...

}
@end

To declare conformance to multiple protocols, do something like this:

@interface ContainerWindow < List, Window >
...

@end

The implementation must include all methods in both protocols.

4.3.3 Using a Formal Protocol

To use a formal protocol, simply send objects the messages in the protocol. If you want
type-checking, you must either use the type of a class implementing the protocol, or use a
special syntax:

...
BiQueue queue = [[BiQueue alloc] init];
// send a LinkedList message

[queue addFirst: anObject];

// alternatively, we may stipulate only that an object conforms to the
// protocol in the following way:

id<LinkedList> todoList = [system getTodoList];

Chapter 4: Writing New Classes 43

task = [todoList getFirst];
...

In the last part of this example, we declare that todoList is an object that conforms to
the LinkedList protocol, but do not specify what class it may be an instance of.
If you are not sure the returned object does indeed conform to the protocol you are interested
in, you can check it:

if ([anObject conformsToProtocol: aProtocol] == YES)
{
// We can go ahead and use the object.

}
else
{
NSLog(@"Object of class %@ ignored ... does not conform to
protocol", NSStringFromClass([anObject class]));

}

Finally, you can specify an object conforming to multiple protocols in the same way you
declare it in an interface:

id <LinkedList, Window> windowContainerOfUnknownClass;

4.4 Categories

Categories provide a way in Objective-C to add new methods to an existing class, without
declaring a subclass. Once the category is declared and implemented, all instances of the
existing class that are created will include the capability to respond to the new methods.
Furthermore, subclasses of the class will inherit these methods. However, it is not possible
to add instance variables to a class using a category. Categories do not have an obvious
parallel in other major object-oriented languages (with the exception of Ruby), but it is
well worth taking the trouble to understand them and the benefits they can provide.
A category is declared in connection with the class it is going to modify. (You can think of
it as a new “category” of instances of this class.)

#import "Point.h"

@interface Point (Transformable)
- translateByX: (float)tx Y: (float)ty;
- rotateByAngle: (float)radians;
- scaleByAmountX: (float)xscale Y: (float)yscale;
@end

You then provide an implementation file more or less analogously to that for a class, where
you implement just the new methods:

#import "PointTransformable.h"

@implementation Point (Transformable)
- (void) translateByX: (float)tx Y: (float)ty
{
x += tx;

44 Objective-C GNUstep Base Programming Manual

y += ty;
return self;

}

- (void) rotateByAngle: (float)radians
{
// ...

}

- (void) scaleByAmountX: (float)xscale Y: (float)yscale
{
// ...

}
@end

Notice that you have access to instance variables of the class you are creating a category
of; this includes private and protected variables.

One of the primary uses of categories is illustrated by this example. Suppose you are
working with a third party drawing package that uses some geometrical classes such as
Point and Line. You are developing an animation program based on the package and
need the ability to move things around. Rather than employing a complex subclassing
or aggregation scheme to add these capabilities, you simply define the Transformable
category for each of the geometrical entities. At runtime, all instances of these entities,
whether created by you or the package itself, have the additional methods. The presence
of these methods does not affect the existing operation of this or any third party package,
but allows you to conveniently implement the enhanced functionality you need.

4.4.1 Category Overrides

You can also use categories to override methods that a class already has. If you do so, you
cannot access an existing implementation in the class itself, however you can still call [super
someMethod] to access an implementation inherited from a superclass. You obviously need
to be careful not to break existing functionality.

You can add multiple categories to a class by declaring them and implementing them sepa-
rately. Instances of the class will then implement all of the categories declared. The order in
which the category implementations are searched for methods is not defined, therefore you
cannot override a method implemented in one category with an implementation in another.

4.4.2 Categories as an Implementation Tool

Categories are not just useful for extending an existing class. Another major use for cate-
gories is to separate the implementation of a new class into a number of source files. (Each
file implements one category of the new class, and at runtime instances of the class respond
to the methods in all the categories.) The benefits of this program development strat-
egy include: grouping subject-oriented methods; incremental compilation for large classes;
helping to logically divide the class when being created by a number of developers; and,
permitting configuration-specific classes targeting particular applications.

Chapter 4: Writing New Classes 45

4.4.3 Categories and Protocols

As described in the previous section, in addition to the formal protocol facility described,
Objective-C provides for informal protocols. An informal protocol is essentially a category
declaration without an implementation. Usually, the informal protocol is declared as a
category for a high-level object, such as NSObject, then each class that actually wishes
to implement something in the protocol lists the methods it chooses to implement in its
interface and provides implementations in its implementation.

4.5 Simulating Private and Protected Methods

Unlike most object-oriented languages Objective-C does not provide for method scoping.
Instead, all methods are effectively public. Often, however, it is useful to have internal
“utility” methods that help a class do its job but are hidden from external use. Rather than
cluttering up the class’s API with a bunch of methods marked “do not use”, one wants to
make these methods visible only to subclasses, or only to the class itself. Categories can
help in this regard.
Using Categories

One common approach is to define a category within a class’s implementation file:

#import "Point.h"

@interface Point (Private)
-(BOOL) isPositiveQuadrant;
@end

@implementation Point
// public method implementations ...

@end

@implementation Point (Private)
-(BOOL) isPositiveQuadrant
{
return (x > 0) && (y > 0) ? YES : NO;

}
@end

All of this code would appear in the file Point.m. What this does is add a category to
Point defining the private methods. Since external code only “knows about” Point through
its interface file, these additional methods are effectively invisible. However, you should be
aware that external code is not prevented from actually calling the private methods, if it
happens to know about them. However the compiler will produce a warning if you try to
do this with a typed variable:

Point *p = [[Point alloc] init];
// works, but produces a compile warning

BOOL b = [p isPositiveQuadrant];

The bright side of this is it allows you to simulate protected methods as well. For this,
the writer of a subclass must be informed in some way about the protected methods, and

46 Objective-C GNUstep Base Programming Manual

they will need to put up with the compiler warnings. Alternatively, you could declare the
Protected category in a separate interface file (e.g., “PointProtected.h”), and provide
this interface file with the understanding that it should only be imported and used by a
subclass’s interface file.
Using Convention

Another approach to providing protected methods that the class or subclass can use is to
prefix these methods with an underscore (’ ’). These methods will still be visible publicly,
but programmers will know, by convention, not to use them externally, and the Appendix A
[GSDoc], page 99 will automatically mark these in API documentation as off-limits.
An alternative approach to providing private methods is to simply declare them as functions
within the implementation file itself. The catch to this is that these functions will not have
access to the class’s instance variables. You will need to pass these in manually whenever
you invoke them from an ordinary method.

4.6 Simulating Class Variables

While Objective-C does not provide for variables that are associated with the class as a
whole rather than an instance, these are often useful. It is possible to simulate them to a
limited extent by declaring static variables in the implementation file for the class (inside
the @implementation block). The variables will not be available to subclasses, unless they
explicitly declare them “extern” and are compiled at the same time.

Chapter 4: Writing New Classes 47

...

48 Objective-C GNUstep Base Programming Manual

Chapter 5: Advanced Messaging 49

5 Advanced Messaging

Objective-C provides some additional possibilities for message routing besides the capabil-
ities described so far (inheritance and categories). One of the most important is that it is
possible for an object, upon receiving a message it has not been set up to respond to, to
forward that message to another object. A second important capability, which forwarding
relies on, is the ability to represent method implementations directly in code. This supports
various reflective operations as well as optimization where messages are sent many times.

5.1 How Messaging Works

Sending an Objective-C message requires three types of information:

• The message receiver - the object which is to perform the request.

• The message selector - this identifies the message, and is used to locate the excecutable
code of the corresponding method by searching the structure of the class, and if neces-
sary its superclasses, for an implementation.

• The message arguments - once the implementation has been found, these are simply
passed to the method on the stack as in an ordinary function call.

In the message ’[taskArray insertObject: anObj atIndex: i]’, the receiver is
“taskArray”, the selector is “insertObject:atIndex:”, and the arguments are “anObj”
and “i”. Notice that the selector includes the argument titles and both colons, but not
the argument names. In other words, this method might have been declared as ’- (void)
insertObject: (id)anObject atIndex: (unsigned)index;’, but the “anObject” and
“index” are just used for tracking the arguments within the method implementation code
and not for looking up the method itself.

The following sequence of events would occur on sending this message at runtime:

1. The internal isa pointer of the receiver (taskArray) is used to look up its class.

2. The class representation is searched for a method implementation matching the selector
(insertObject:atIndex:). If it is not found, the class’s superclass is searched, and
recursively its superclass, until an implementation is found.

3. The implementation is called, as if it were a C function, using the arguments given
(anObj and i), and the result is returned to the code sending the message.

In fact, when the method implementation is actually called, it additionally receives two
implicit arguments: the receiver and the selector. These additional hidden arguments may
be referred to in the source code by the names self and _cmd.

The process of looking up the method implementation in the receiver at runtime is known
as dynamic binding. This is part of what makes the language powerful and flexible, but it
is inevitably (despite clever caching strategies used in the runtime library) a little slower
than a simple function call in C. There are, however, ways of short-circuiting the process
in cases where performance is at a premium. Before discussing this, we must first cover the
concepts of selectors and implementations in greater detail.

50 Objective-C GNUstep Base Programming Manual

5.2 Selectors

So far we have been using the following syntax to send messages to objects:
[myArray removeObjectIdenticalTo: anObject];

The example sends the message named removeObjectIdenticalTo: to myArray with the
argument anObject.
An alternative method of writing this is the following:

SEL removalSelector = @selector(removeObjectIdenticalTo:);
[myArray performSelector: removalSelector withObject: anObject];

Here, the first line obtains the desired method selector in the form of a compiled repre-
sentation (not the full ASCII name), and the second line sends the message as before, but
now in an explicit form. Since the message that is sent is now effectively a variable set at
runtime, this makes it possible to support more flexible runtime functioning.

5.2.1 The Target-Action Paradigm

One conventional way of using selectors is called the target-action paradigm, and provides
a means for, among other things, binding elements of a graphical user interface together at
runtime.
The idea is that a given object may serve as a flexible signal sender if it is given a receiver
(the target) and a selector (the action) at runtime. When the object is told to send the
signal, it sends the selector to the receiver. In some variations, the object passes itself as
an argument.
The code to implement this paradigm is simple -

- (id) performAction
{
if (target == nil || action == 0)
{
return nil; // Target or action not set ... do nothing

}
if ([target respondsToSelector: action] == NO)
{
return nil; // Target cannot deal with action ... do nothing

}
return [target performSelector: action withObject: self];

}

As an example, consider a graphical button widget that you wish to execute some method
in your application when pressed.

[button setTarget: bigMachine]
[button setAction: @selector(startUp:)];

Here, button stores the given target and action in instance variables, then when it is
pressed, it internally calls a method like performAction shown above, and sends the message
“[bigMachine startUp: button]”.
If you are used to programming with events and listeners in Java, the target-action paradigm
provides a lighter-weight alternative for the most common case where only one object needs
to be informed when an event occurs. Rather than writing or extending a special-purpose

Chapter 5: Advanced Messaging 51

adaptor class, you just register the method you want called directly with the actuating
element. If you need to send the event to multiple objects, however, you would need to
write a special method to multiplex the event out. This would be approximately comparable
effort to what is always required in Java, and is only needed in the minority of cases.

5.2.2 Obtaining Selectors

In addition to using the compile-time @selector operator, there are a couple of other ways
of obtaining selectors.
• In a method implementation, you can always obtain the current selector from the

variable _cmd:
- (void) removeObjectIdenticalTo: (id)anObject
{
SEL mySelector = _cmd;
// ...

}

• At any point, you can use the NSSelectorFromString() function -
SEL mySelector = NSSelectorFromString(@"removeObjectIdenticalTo:");

In reality, you would never use NSSelectorFromString for a constant string as shown;
@selector would do and is more efficient, since is a compile-time operator. Its chief
utility lies in the case where the selector name is in a variable value (for whatever
reason).

If you ever need to test the contents of a SEL variable for equality with another, you should
use the function sel_eq() provided as part of the GNU Objective-C runtime library. This is
necessary because, while the compiler tries to ensure that compile-time generated references
to selectors for a particular message point to the same structure, selectors produced at
runtime, or in different compilation units, will be different and a simple pointer equality
test will not do.

5.2.3 Avoiding Messaging Errors when an Implementation is Not
Found

Using typed objects as shown below, the compiler would forewarn you if the anObject was
unable to respond to the alert: message, as it knows what type of object anObject is:

SomeClass *anObject; // an instance of the ’SomeClass’ class

anObject = [[SomeClass alloc] init]; // build and initialize the object
[anObject alert: additionalObject]; // compiler warns if ’alert:’ not

// defined in SomeClass or a superclass

However at times the compiler will not forewarn you that a message will attempt to invoke
a method that is not in the receiver’s repertoire. For instance, consider the code below
where anObject is not known to implement the alert: message:

id anObject; // arbitrary object;

anObject = [[SomeClass alloc] init]; // build and initialize object
[anObject alert: additionalObject]; // compiler cannot check whether

// ’alert’ is defined

52 Objective-C GNUstep Base Programming Manual

In this case, the compiler will not issue a warning, because it only knows that anObject is
of type id . . . so it doesn’t know what methods the object implements.
At runtime, if the Objective-C runtime library fails to find a method implementation for the
alert: message in the SomeClass class or one of its superclasses, an exception is generated.
This can be avoided in one of two ways.
The first way is to check in advance whether the method is implemented:

if ([anObject respondsToSelector: @selector(alert:)] == YES)
{
[anObject alert: additionalObject]; // send it a message.

}
else
{
// Do something else if the object can’t be alerted

}

The second way is for the object the message was sent to to forward it somewhere else.

5.3 Forwarding

What actually happens when the GNU Objective-C runtime is unable to find a method
implementation associated with an object for a given selector is that the runtime instead
sends a special forwardInvocation: message to the object. (Other Objective-C runtimes
do the same, but with a slightly different message name and structure.) The object is
then able to use the information provided to handle the message in some way, a common
mechanism being to forward the message to another object known as a delegate, so that
the other object can deal with it.

- (void) forwardInvocation: (NSInvocation*)invocation
{
if ([forwardee respondsToSelector: [invocation selector]])
return [invocation invokeWithTarget: forwardee];

else
return [self doesNotRecognizeSelector: [invocation selector]];

}

• invocation is an instance of the special NSInvocation class containing all the infor-
mation about the original message sent, including its selector and its arguments.

• forwardee is an instance variable containing the id of an object which has been de-
termined to be likely to implement methods that this object does not.

• The NSInvocation class has a convenience method that will pass the message on to a
target object given as argument.

• The doesNotRecognizeSelector method is a fallback which is implemented in
NSObject. Unless it has been overidden, its behavior is to raise a runtime exception
(a NSInvalidArgumentException to be exact), which generates an error message and
aborts.

Forwarding is a powerful method for creating software patterns. One of these is that for-
warding can be used to in effect provide a form of multiple inheritance. Note, however that,
unlike inheritance, a forwarded method will not show up in tests like respondsToSelector

Chapter 5: Advanced Messaging 53

and isKindOfClass:. This is because these methods search the inheritance path, but ignore
the forwarding path. (It is possible to override them though.)
Another pattern you may come across is surrogate object : surrogates forward messages to
other objects that can be assumed to be more complex. The forwardInvocation: method
of the surrogate object receives a message that is to be forwarded; it determines whether
or not the receiver exists, and if it does not, then it will attempt to create it. A proxy
object is a common example of a surrogate object. A proxy object is useful in a remote
invocation context, as well as certain scenarios where you want one object to fulfill functions
of another.

5.4 Implementations

Recall that when a message is sent, the runtime system searches for a method implemen-
tation associated with the recipient object for the specified selector. (Behind the scenes
this is carried out by a function “objc_msgSend()”.) This may necessitate searches across
multiple superclass objects traversing upwards in the inheritance hierarchy, and takes time.
Once the runtime finds an implementation for a class, it will cache the information, sav-
ing time on future calls. However, even just checking and accessing the cache has a cost
associated with it. In performance-critical situations, you can avoid this by holding on to
an implementation yourself. In essence, implementations are function pointers, and the
compiler provides a datatype for storing them when found at runtime:

SEL getObjSelector = @selector(getObjectAtIndex:);
// get the ’getObjectAtIndex’ implementation for NSArray ’taskArray’

IMP getObjImp = [taskArray methodForSelector: getObjSelector];
// call the implementation as a function

id obj = (getObjImp)(taskArray, getObjSelector, i);

Here, we ask the runtime system to find the ’taskArray’ object’s implementation of
’getObjectAtIndex’. The runtime system will use the same algorithm as if you were
performing a method call to look up this code, and then returns a function pointer to it.
In the next line, this pointer is used to call the function in the usual C fashion. Notice
that the signature includes both the object and the selector – recall that these are the
two implicit arguments, self and _cmd, that every method implementation receives. The
actual type definition for IMP allows for a variable number of additional arguments, which
are the explicit arguments to the method call:

typedef id (*IMP)(id, SEL, ...);

The return type of IMP is id. However, not all methods return id; for these others you
can still get the implementation, but you cannot use an IMP variable and instead must cast
it yourself. For example, here is such a cast for a method taking a double and returning
’double’:

double (*squareFunc)(id, SEL, double);
double result;

squareFunc = (double (*)(id, SEL, double))
[mathObj methodForSelector: @selector(squareOf:)];

result = squareFunc(mathObj, @selector(squareOf:), 4);

54 Objective-C GNUstep Base Programming Manual

You need to declare such a function pointer type for any method that returns something
besides id or int. It is not necessary to declare the argument list (double) as we did above;
the first line could have been “double (*squareFunc)(id, SEL, ...)” instead.
An excellent exposition of the amount of time saved in using methodForSelector and
other details of the innards of Objective-C and the Foundation may be found here:
http://www.mulle-kybernetik.com/artikel/Optimization/opti-3.html.
You should realize that it is only worth it to acquire the IMP if you are going to call it
a large number of times, and if the code in the method implementation itself is not large
compared with the message send overhead. In addition, you need to be careful not to call
it when it might be the wrong function. Even when you are sure of the class of the object
you are calling it on, Objective-C is sufficiently dynamic that the correct function could
change as a program runs. For example, a new category for a class could be loaded, so that
the implementation of a method changes. Similarly, a class could be loaded that poses as
another, or one that was posing stops doing so. In general, IMPs should be acquired just
before they are to be used, then dropped afterwards.

http://www.mulle-kybernetik.com/artikel/Optimization/opti-3.html

Chapter 6: Exception Handling, Logging, and Assertions 55

6 Exception Handling, Logging, and Assertions

No matter how well a program is designed, if it has to interact with a user or other aspect
of the outside world in any way, the code is bound to occasionally meet with cases that
are either invalid or just plain unexpected. A very simple example is when a program asks
the user to enter a filename, and the user enters the name of a file that does not exist, or
does not enter a name at all. Perhaps a valid filename is entered, but, due to a previous
disk write error the contents are garbled. Any number of things can go wrong. In addition,
programmer error inevitably occurs and needs to be taken account of. Internal functions
may be called with invalid arguments, either due to unexpected paths being taken through
the code, or silly things like typos using the wrong variable for something. When these
problems happen (and they will happen), it is better to handle them gracefully than for
the program to crash, or worse, to continue processing but in an erroneous way.
To allow for this, many computer languages provide two types of facilities. The first is
referred to as exception handling or sometimes error trapping. The second is referred to
as assertion checking. Exceptions allow the program to catch errors when they occur and
react to them explicitly. Assertions allow a programmer to establish that certain conditions
hold before attempting to execute a particular operation. GNUstep provides both of these
facilities, and we will cover each in turn. The assertion facility is tied in with the GNUstep
logging facilities, so we describe those as well.
To use any of the facilities described in this chapter requires that you include
Foundation/NSException.h.

6.1 Exceptions

GNUstep exception handling provides for two things:
1. When an error condition is detected during execution, control is passed to a special

error-handling routine, which is given information on the error that occurred.
2. This routine may itself, if it chooses, pass this information up the function call stack to

the next higher level of control. Often higher level code is more aware of the context
in which the error is occurring, and can therefore make a better decision as to how to
react.

6.1.1 Catching and Handling Exceptions

GNUstep exception handling is implemented through the macros NS_DURING, NS_HANDLER,
and NS_ENDHANDLER in conjunction with the NSException class. The following illustrates
the pattern:

NS_DURING
{
// do something risky ...

}
NS_HANDLER
{
// a problem occurred; inform user or take another tack ...

}
NS_ENDHANDLER

56 Objective-C GNUstep Base Programming Manual

// back to normal code...

For instance:

- (DataTree *) readDataFile: (String *)filename
{
ParseTree *parse = nil;
NS_DURING
{
FileHandle *handle = [self getFileHandle: filename];
parse = [parser parseFile: handle];

}
NS_HANDLER
{
if ([[localException name] isEqualToString: MyFileNotFoundException])
{
NS_VALUERETURN([self readDataFile: fallbackFilename]);

}
else if ([[localException name] isEqualToString: NSParseErrorException])
{
NS_VALUERETURN([self readDataFileInOldFormat: filename]);

}
else
{
[localException raise];

}
}

NS_ENDHANDLER
return [[DataTree alloc] initFromParseTree: parse];

}

Here, a file is parsed, with the possibility of at least two different errors: not finding the
file and the file being misformatted. If a problem does occur, the code in the NS_HANDLER
block is jumped to. Information on the error is passed to this code in the localException
variable, which is an instance of NSException. The handler code examines the name of
the exception to determine if it can implement a work-around. In the first two cases, an
alternative approach is available, and so the NS_VALUERETURN macro is used to return an
alternative value to the readDataFile: caller. Note that it is not allowed to simply write
“return x;” inside an exception handler, owing to the nature of the behind-the-scenes C
constructs implementing the mechanism (the setjmp() and longjmp() functions). If you
are in a void function not returning a value, you may use simply “NS_VOIDRETURN” instead.
Finally, notice that in the third case above the handler does not recognize the exception
type, so it passes it one level up to the caller by calling -raise on the exception object.

6.1.2 Passing Exceptions Up the Call Stack

If the caller of -readDataFile: has enclosed the call inside its own NS_DURING . . . NS_
HANDLER . . . NS_ENDHANDLER block, it will be able to catch this exception and react to it in
the same way as we saw here. Being at a higher level of execution, it may be able to take
actions more appropriate than the -readDataFile: method could have.

Chapter 6: Exception Handling, Logging, and Assertions 57

If, on the other hand, the caller had not enclosed the call, it would not get a chance to
react, but the exception would be passed up to the caller of this code. This is repeated until
the top control level is reached, and then as a last resort NSUncaughtExceptionHandler is
called. This is a built-in function that will print an error message to the console and exit
the program immediately. If you don’t want this to happen it is possible to override this
function by calling NSSetUncaughtExceptionHandler(fn_ptr). Here, fn_ptr should be
the name of a function with this signature (defined in NSException.h):

void NSUncaughtExceptionHandler(NSException *exception);

One possibility would be to use this to save files or any other unsaved state before an
application exits because of an unexpected error.

6.1.3 Where do Exceptions Originate?

You may be wondering at this point where exceptions come from in the first place. There are
two main possibilities. The first is from the Base library; many of its classes raise exceptions
when they run into error conditions. The second is that application code itself raises them,
as described in the next section. Exceptions do not arise automatically from C-style error
conditions generated by C libraries. Thus, if you for example call the strtod() function to
convert a C string to a double value, you still need to check errno yourself in standard C
fashion.
Another case that exceptions are not raised in is in the course of messaging. If a message
is sent to nil, it is silently ignored without error. If a message is sent to an object that
does not implement it, the forwardInvocation method is called instead, as discussed in
Chapter 5 [Advanced Messaging], page 49.

6.1.4 Creating Exceptions

If you want to explicitly create an exception for passing a particular error condition upwards
to calling code, you may simply create an NSException object and raise it:

NSException myException = [[NSException alloc]
initWithName: @"My Exception"

reason: @"[Description of the cause...]"
userInfo: nil];

[myException raise];
// code in block after here is unreachable..

The userInfo argument here is a NSDictionary of key-value pairs containing application-
specific additional information about the error. You may use this to pass arbitrary argu-
ments within your application. (Because this is a convenience for developers, it should have
been called developerInfo..)
Alternatively, you can create the exception and raise it in one call with +raise:

[NSException raise: @"My Exception"
format: @"Parse error occurred at line %d.",lineNumber];

Here, the format argument takes a printf-like format analogous to [NSString
-stringWithFormat:] discussed Chapter 2 [Strings in GNUstep], page 11. In general, you
should not use arbitrary names for exceptions as shown here but constants that will be
recognized throughout your application. In fact, GNUstep defines some standard constants
for this purpose in NSException.h:

58 Objective-C GNUstep Base Programming Manual

NSCharacterConversionException
An exception when character set conversion fails.

NSGenericException
A generic exception for general purpose usage.

NSInternalInconsistencyException
An exception for cases where unexpected state is detected within an object.

NSInvalidArgumentException
An exception used when an invalid argument is passed to a method or function.

NSMallocException
An exception used when the system fails to allocate required memory.

NSParseErrorException
An exception used when some form of parsing fails.

NSRangeException
An exception used when an out-of-range value is encountered.

Also, some Foundation classes define their own more specialized exceptions:

NSFileHandleOperationException (NSFileHandle.h)
An exception used when a file error occurs.

NSInvalidArchiveOperationException (NSKeyedArchiver.h)
An archiving error has occurred.

NSInvalidUnarchiveOperationException (NSKeyedUnarchiver.h)
An unarchiving error has occurred.

NSPortTimeoutException (NSPort.h)
Exception raised if a timeout occurs during a port send or receive operation.

NSUnknownKeyException (NSKeyValueCoding.h)
An exception for an unknown key.

6.1.5 When to Use Exceptions

As might be evident from the -readDataFile: example above, if a certain exception can
be anticipated, it can also be checked for, so you don’t necessarily need the exception
mechanism. You may want to use exceptions anyway if it simplifies the code paths. It is
also good practice to catch exceptions when it can be seen that an unexpected problem
might arise, as any time file, network, or database operations are undertaken, for instance.

Another important case where exceptions are useful is when you need to pass detailed
information up to the calling method so that it can react appropriately. Without the
ability to raise an exception, you are limited to the standard C mechanism of returning a
value that will hopefully be recognized as invalid, and perhaps using an errno-like strategy
where the caller knows to examine the value of a certain global variable. This is inelegant,
difficult to enforce, and leads to the need, with void methods, to document that “the caller
should check errno to see if any problems arose”.

Chapter 6: Exception Handling, Logging, and Assertions 59

6.2 Logging

GNUstep provides several distinct logging facilities best suited for different purposes.

6.2.1 NSLog

The simplest of these is the NSLog(NSString *format, ...) function. For example:
NSLog(@"Error occurred reading file at line %d.", lineNumber);

This would produce, on the console (stderr) of the application calling it, something like:
2004-05-08 22:46:14.294 SomeApp[15495] Error occurred reading file at line 20.

The behavior of this function may be controlled in two ways. First, the user default
GSLogSyslog can be set to “YES”, which will send these messages to the syslog on sys-
tems that support that (Unix variants). Second, the function GNUstep uses to write the
log messages can be overridden, or the file descriptor the existing function writes to can be
overridden:

// these changes must be enclosed within a lock for thread safety
NSLock *logLock = GSLogLock();
[logLock lock];

// to change the file descriptor:
_NSLogDescriptor = <fileDescriptor>;
// to change the function itself:

_NSLog_printf_handler = <functionName>;

[logLock unlock];

Due to locking mechanisms used by the logging facility, you should protect these changes
using the lock provided by GSLogLock() (see Chapter 8 [Threads and Run Control], page 83
on locking).
The NSLog function was defined in OpenStep and is also available in Mac OS X Cocoa,
although the overrides described above may not be. The next set of logging facilities to be
described are only available under GNUstep.

6.2.2 NSDebugLog, NSWarnLog

The facilities provided by the NSDebugLog and NSWarnLog families of functions support
source code method name and line-number reporting and allow compile- and run-time
control over logging level.
The NSDebugLog functions are enabled at compile time by default. To turn them off,
set ’diagnose = no’ in your makefile, or undefine GSDIAGNOSE in your code before in-
cluding NSDebug.h. To turn them off at runtime, call [[NSProcessInfo processInfo]
setDebugLoggingEnabled: NO]. (An NSProcessInfo instance is automatically instanti-
ated in a running GNUstep application and may be obtained by invoking [NSProcessInfo
processInfo].)
At runtime, whether or not logging is enabled, a debug log method is called like this:

NSDebugLLog(@"ParseError", @"Error parsing file at line %d.", lineNumber);

Here, the first argument to NSDebugLog, “ParseError”, is a string key that specifies the
category of message. The message will only actually be logged (through a call to NSLog())

60 Objective-C GNUstep Base Programming Manual

if this key is in the set of active debug categories maintained by the NSProcessInfo object
for the application. Normally, this list is empty. There are three ways for string keys to
make it onto this list:
• Provide one or more startup arguments of the form --GNU-Debug=<key> to the pro-

gram. These are processed by GNUstep and removed from the argument list before
any user code sees them.

• Call [NSProcessInfo debugSet] at runtime, which returns an NSMutableSet. You
can add (or remove) strings to this set directly.

• The GNU-Debug user default nay contain a comma-separated list of keys. However, note
that [NSUserDefaults standardUserDefaults] must first be called before this will
take effect (to read in the defaults initially).

While any string can be used as a debug key, conventionally three types of keys are com-
monly used. The first type expresses a “level of importance” for the message, for example,
“Debug”, “Info”, “Warn”, or “Error”. The second type of key that is used is class name.
The GNUstep Base classes used this approach. For example if you want to activate debug
messages for the NSBundle” class, simply add ’NSBundle’ to the list of keys. The third
category of key is the default key, ’dflt’. This key can be used whenever the specificity of
the other key types is not required. Note that it still needs to be turned on like any other
logging key before messasges will actually be logged.
There is a family of NSDebugLog functions with slightly differing behaviors:

NSDebugLLog(key, format, args,...)
Basic debug log function already discussed.

NSDebugLog(format, args,...)
Equivalent to NSDebugLLog with key “dflt” (for default).

NSDebugMLLog(level, format, args,...)
Equivalent to NSDebugLLog but includes information on which method the log-
ging call was made from in the message.

NSDebugMLog(format, args,...)
Same, but use ’dflt’ log key.

NSDebugFLLog(level, format, args,...)
As NSDebugMLLog but includes information on a function rather than a method.

NSDebugFLog(format, args,...)
As previous but using ’dflt’ log key.

The implementations of the NSDebugLog functions are optimized so that they consume little
time when logging is turned off. In particular, if debug logging is deactivated at compile
time, there is NO performance cost, and if it is completely deactivated at runtime, each call
entails only a boolean test. Thus, they can be left in production code.
There is also a family of NSWarn functions. They are similar to the NSDebug functions
except that they do not take a key. Instead, warning messages are shown by default un-
less they are disabled at compile time by setting ’warn = no’ or undefining GSWARN, or at
runtime by adding “NoWarn” to [NSProcessInfo debugSet]. (Command-line argument
--GNU-Debug=NoWarn and adding “NoWarn” to the GNU-Debug user default will also work.)

Chapter 6: Exception Handling, Logging, and Assertions 61

NSWarnLog(), NSWarnLLog(), NSWarnMLLog, NSWarnMLog, NSWarnFLLog, and NSWarnFLog
are all similar to their NSDebugLog counterparts.

6.2.3 Last Resorts: GSPrintf and fprintf

Both the NSDebugLog and the simpler NSLog facilities utilize a fair amount of machinery -
they provide locking and timestamping for example. Sometimes this is not appropriate, or
might be too heavyweight in a case where you are logging an error which might involve the
application being in some semi-undefined state with corrupted memory or worse. You can
use the GSPrintf() function, which simply converts a format string to UTF-8 and writes
it to a given file:

GSPrintf(stderr, "Error at line %d.", n);

If even this might be too much (it uses the NSString and NSData classes), you can always
use the C function fprintf():

fprintf(stderr, "Error at line %d.", n);

Except under extreme circumstances, the preferred logging approach is either
NSDebugLog/NSWarnLog, due the the compile- and run-time configurability they offer, or
NSLog.

6.2.4 Profiling Facilities

GNUstep supports optional programmatic access to object allocation statistics. To ini-
tiate collection of statistics, call the function GSDebugAllocationActive(BOOL active)
with an argument of “YES”. To turn it off, call it with “NO”. The overhead of statis-
tics collection is only incurred when it is active. To access the statistics, use the set of
GSDebugAllocation...() functions defined in NSDebug.h.

6.3 Assertions

Assertions provide a way for the developer to state that certain conditions must hold at
a certain point in source code execution. If the conditions do not hold, an exception is
automatically raised (and succeeding code in the block is not executed). This avoids an
operation from taking place with illegal inputs that may lead to worse problems later.

The use of assertions is generally accepted to be an efficient means of improving code quality,
for, like unit testing, they can help rapidly uncover a developer’s implicit or mistaken
assumptions about program behavior. However this is only true to the extent that you
carefully design the nature and placement of your assertions. There is an excellent discussion
of this issue bundled in the documentation with Sun’s Java distribution.

6.3.1 Assertions and their Handling

Assertions allow the developer to establish that certain conditions hold before undertaking
an operation. In GNUstep, the standard means to make an assertion is to use one of a
collection of NSAssert macros. The general form of these macros is:

NSAssert(<boolean test>, <formatString>, <argumentsToFormat>);

For instance:

NSAssert1(x == 10, "X should have been 10, but it was %d.", x);

62 Objective-C GNUstep Base Programming Manual

If the test ’x == 10’ evaluates to true, NSLog() is called with information on the method
and line number of the failure, together with the format string and argument. The resulting
console message will look like this:

Foo.m:126 Assertion failed in Foo(instance), method Bar. X should have been
10, but it was 5.

After this is logged, an exception is raised of type ’NSInternalInconsistencyException’,
with this string as its description.
In order to provide the method and line number information, the NSAssert() routine
must be implemented as a macro, and therefore to handle different numbers of arguments
to the format string, there are 5 assertion macros for methods: NSAssert(condition,
description), NSAssert1(condition, format, arg1), NSAssert2(condition, format,
arg1, arg2), ..., NSAssert5(...).
If you need to make an assertion inside a regular C function (not an Objective-C method),
use the equivalent macros NSCAssert(), etc..
Note, you can completely disable assertions (saving the time for the boolean test and avoid-
ing the exception if fails) by putting #define NS_BLOCK_ASSERTIONS before you include
NSException.h.

6.3.2 Custom Assertion Handling

The aforementioned behavior of logging an assertion failure and raising an exception can be
overridden if desired. You need to create a subclass of NSAssertionHandler and register an
instance in each thread in which you wish the handler to be used. This is done by calling:

[[[NSThread currentThread] threadDictionary]
setObject:myAssertionHandlerInstance forKey:N̈SAssertionHandler"];

See Chapter 8 [Threads and Run Control], page 83 for more information on what this is
doing.

6.4 Comparison with Java

GNUstep’s exception handling facilities are, modulo syntax, equivalent to those in Java in
all but three respects:
• There is no provision for a “finally” block executed after either the main code or the

exception handler code.
• You cannot declare the exception types that could be raised by a method in its signa-

ture. In Java this is possible and the compiler uses this to enforce that a caller should
catch exceptions if they might be generated by a method.

• Correspondingly, there is no support in the Appendix A [GSDoc], page 99 for docu-
menting exceptions potentially raised by a method. (This will hopefully be rectified
soon.)

The logging facilities provided by NSDebugLog and company are similar to but a bit more
flexible than those provided in the Java/JDK 1.4 logging APIs, which were based on the
IBM/Apache Log4J project.
The assertion facilities are similar to but a bit more flexible than those in Java/JDK 1.4
since you can override the assertion handler.

Chapter 7: Distributed Objects 63

7 Distributed Objects

Until now we have been concentrating on using the Objective-C language to create programs
that execute in a single process. But what if you want your program to interact with objects
in other processes, perhaps running on different machines?
As a simple example, we may have a client process that needs to access a telephone directory
stored on a remote server. The client process could send a message to the server that
contained a person’s name, and the server could respond by returning that person’s number.
The GNUstep base library provides a powerful set of classes that make this type of remote
messaging not only possible, but easy to program. So what do these classes do and how
can we use them? To answer that we must first look at the way code interacts with objects
in a single process, and then look at how we can achieve the same interaction with objects
that exist in different processes.

7.1 Object Interaction

To continue with the example above, if the telephone directory existed in the same process
as the code that was accessing it, then a simple message would return the wanted telephone
number.

NSString *wantedNumber = [telephoneDirectory teleNumber: personName];

Now object and method names just hold pointers to memory addresses. The code executed
at run time in response to the teleNumber message is located at an address held by the
name of the responding method (a variable), while data in the telephone directory is located
at an address held by the telephoneDirectory variable.
In a single process these addresses can be accessed by the client code at run time, but if
the telephone directory is located on a remote server, then the address of the remote object
is not known in the client process (the telephoneDirectory object and its responding
method are said to exist in a separate ’address space’).
The Objective-C run-time library was not designed for this inter-process communication or
’remote messaging’.

7.2 The GNUstep Solution

GNUstep overcomes these limitations by providing you with classes that form what is known
as a ’distributed objects’ architecture that extends the capabilities of the run-time system.
With the addition of a few lines of code in the client and server programs, these extensions
allow you to send a message to a remote process by constructing a simple Objective-C
statement. In the telephone directory example, the statement to retrieve the telephone
number would now look something like this:

NSString *wantedNumber = [proxyForDirectory teleNumber: personName];

Compare this to the original statement:
NSString *wantedNumber = [telephoneDirectory teleNumber: personName];

Notice that the only difference between the two statements is the name of the object re-
ceiving the message, i.e. proxyForDirectory rather than telephoneDirectory. GNUstep
makes it as simple as this to communicate with an object in another process.

64 Objective-C GNUstep Base Programming Manual

The variable proxyForDirectory is known as a ’proxy’ for the remote telephoneDirectory
object. A proxy is simply a substitute for the remote object, with an address in the ’address
space’ of the local client process, that receives messages and forwards them on to the remote
server process in a suitably coded form.
Let us now take a look at the additional lines of code required to make this ’remote mes-
saging’ possible.

7.2.1 Code at the Server

In order to respond to client messages, the responding server object must be set as the ’root
object’ of an instance of the NSConnection class, and this NSConnection must be registered
with the network by name. Making an object available to client processes in this way is
known as ’vending’ the object. The registered name for the NSConnection is used by the
client when obtaining a proxy for the responding server object over the network.
The only other code you need to consider is the code that listens for incoming messages.
This ’runloop’, as it is known, is started by sending a run message to an instance of the
NSRunLoop class. Since an NSRunLoop object is created automatically for each process, there
is no need to create one yourself. Simply get the default runloop, which is returned by the
+currentRunLoop class method.
When the runloop detects an incoming message, the message is passed to the root object of
the NSConnection, which performs a method in response to the message and returns a vari-
able of the appropriate type. The NSConnection manages all inter-process communication,
decoding incoming messages and encoding any returned values.
The code to vend the telephoneDirectory object and start the runloop would look some-
thing like this:

/*
* The main() function: Set up the program
* as a ’Distributed Objects Server’.
*/
int main(void)
{
/*
* Remember, create an instance of the
* NSAutoreleasePool class.
*/
CREATE_AUTORELEASE_POOL(pool);

/*
* Get the default NSConnection object
* (a new one is automatically created if none exists).
*/
NSConnection *connXion = [NSConnection defaultConnection];

/*
* Set the responding server object as
* the root object for this connection.
*/

Chapter 7: Distributed Objects 65

[connXion setRootObject: telephoneDirectory];

/*
* Try to register a name for the NSConnection,
* and report an error if this is not possible.
*/
if ([connXion registerName: @"DirectoryServer"] == NO)
{
NSLog(@"Unable to register as ’DirectoryServer’");
NSLog(@"Perhaps another copy of this program is running?");
exit(1);

}

/* Start the current runloop. */
[[NSRunLoop currentRunLoop] run];

/* Release the pool */
RELEASE(pool);
return 0;

}

These additional lines of code turn a program into a distributed objects server, ready to
respond to incoming client messages.

7.2.2 Code at the Client

At the client, all you need do is obtain a proxy for the responding server object, using the
name that was registered for the NSConnection at the server.

/* Create an instance of the NSAutoreleasePool class */
CREATE_AUTORELEASE_POOL(pool);

/* Get the proxy */
id proxy = [NSConnection
rootProxyForConnectionWithRegisteredName: registeredServerName];

/* The rest of your program code goes here */

/* Release the pool */
RELEASE(pool);

The code that obtains the proxy automatically creates an NSConnection object for manag-
ing the inter-process communication, so there is no need to create one yourself.

The above example serves to establish a secure connection between processes which are run
by the same person and are both on the same host.

If you want your connections to work between different host or between programs being run
by different people, you do this slightly differently, telling the system that you want to use
’socket’ ports, which make TCP/IP connections over the network.

int main(void)

66 Objective-C GNUstep Base Programming Manual

{
CREATE_AUTORELEASE_POOL(pool);

/*
* Create a new socket port for your connection.
*/
NSSocketPort *port = [NSSocketPort port];

/*
* Create a connection using the socket port.
*/
NSConnection *connXion = [NSConnection connectionWithReceivePort: port
sendPort: port];

/*
* Set the responding server object as
* the root object for this connection.
*/
[connXion setRootObject: telephoneDirectory];

/*
* Try to register a name for the NSConnection,
* and report an error if this is not possible.
*/
if ([connXion registerName: @"DirectoryServer"
withNameServer: [NSSocketPortNameServer sharedInstance]] == NO)

{
NSLog(@"Unable to register as ’DirectoryServer’");
NSLog(@"Perhaps another copy of this program is running?");
exit(1);

}

[[NSRunLoop currentRunLoop] run];

RELEASE(pool);
return 0;

}

In the above example, we specify that the socket port name server is used to register the
name for the connection ... this makes the connection name visible to processes running on
other machines.

The client side code is as follows

/* Create an instance of the NSAutoreleasePool class */
CREATE_AUTORELEASE_POOL(pool);

/* Get the proxy */
id proxy = [NSConnection

Chapter 7: Distributed Objects 67

rootProxyForConnectionWithRegisteredName: registeredServerName

host: hostName

usingNameServer: [NSSocketPortNameServer sharedInstance]];

/* The rest of your program code goes here */

/* Release the pool */
RELEASE(pool);

If the hostName in this statement is ’nil’ or an empty string, then only the local host will
be searched to find the registeredServerName. If hostName is "*", then all hosts on the
local network will be searched.

In the telephone directory example, the code to obtain the proxy from any host on the
network would be:

id proxyForDirectory = [NSConnection
rootProxyForConnectionWithRegisteredName: @"DirectoryServer"
host: @"*"
usingNameServer: [NSSocketPortNameServer sharedInstance]];

With this additional line of code in the client program, you can now construct a simple
Objective-C statement to communicate with the remote object.

NSString *wantedNumber = [proxyForDirectory teleNumber: personName];

7.2.3 Using a Protocol

A client process does not need to know the class of a remote server object to avoid run-time
errors, it only needs to know the messages to which the remote object responds. This can
be determined by the client at run-time, by asking the server if it responds to a particular
message before the message is sent.

If the methods implemented at the server are stated in a formal protocol, then the client
can ask the server if it conforms to the protocol, reducing the network traffic required for
the individual message/response requests.

A further advantage is gained at compile time, when the compiler will issue a warning if
the server fails to implement any method declared in the protocol, or if the client contains
any message to which the server cannot respond.

The protocol is saved to a header file and then included in both client and server programs
with the usual compiler #include directive. Only the server program needs to implement
the methods declared in the protocol. To enable compiler checking in the client program,
extend the type declaration for the proxy to this protocol, and cast the returned proxy
object to the same extended type.

In the telephone directory example, if the declared protocol was TelephoneDirectory,
declared in header file protocolHeader.h, then the client code would now look like this:

#include "protocolHeader.h";

/* Extend the type declaration */
id<TelephoneDirectory> proxyForDirectory;

68 Objective-C GNUstep Base Programming Manual

/* Cast the returned proxy object to the extended type */
proxyForDirectory = (id<TelephoneDirectory>) [NSConnection
rootProxyForConnectionWithRegisteredName: @"DirectoryServer"
usingNameServer: [NSSocketPortNameServer sharedInstance]];

Since class names and protocol names do not share the same ’address space’ in a process,
the declared protocol and the class of the responding server object can share the same name,
making code easier to understand.

For example, proxyForDirectory at the client could be a proxy for an instance
of the TelephoneDirectory class at the server, and this class could implement the
TelephoneDirectory protocol.

7.2.4 Complete Code for Telephone Directory Application

Here we provide the rest of the code needed for client and server to actually run the above
example.

Code At Server

#include <Foundation/Foundation.h>

/* Include the TelephoneDirectory protocol header file */
#include "TelephoneDirectory.h"

/*
* Declare the TelephoneDirectory class that
* implements the ’teleNumber’ instance method.
*/
@interface TelephoneDirectory : NSObject <TelephoneDirectory>
@end

/*
* Define the TelephoneDirectory class
* and the instance method (teleNumber).
*/
@implementation TelephoneDirectory : NSObject
- (char *) teleNumber: (char *) personName
{
if (strcmp(personName, "Jack") == 0) return " 0123 456";
else if (strcmp(personName, "Jill") == 0) return " 0456 789";
else return " Number not found";

}
@end

/* main() function: Set up the program as a ’Distibuted Objects Server’. */
/* [use code from server example above ...] */

Code at Client

#include <Foundation/Foundation.h>

Chapter 7: Distributed Objects 69

/* Include the TelephoneDirectory protocol header file */
#include "TelephoneDirectory.h"

/*
* The main() function: Get the telephone number for
* ’personName’ from the server registered as ’DirectoryServer’.
*/
int main(int argc, char *argv[])
{
char *personName = argv[1];
char *returnedNumber;
id<TelephoneDirectory> proxyForDirectory;
CREATE_AUTORELEASE_POOL(pool);

/* Acquire the remote reference. */
proxyForDirectory = (id<TelephoneDirectory>) [NSConnection
rootProxyForConnectionWithRegisteredName: @"DirectoryServer"
host: @"*"
usingNameServer: [NSSocketPortNameServer sharedInstance]];

if (proxyForDirectory == nil)
printf("\n** WARNING: NO CONNECTION TO SERVER **\n");

else printf("\n** Connected to server **\n");

if (argc == 2) // Command line name entered
{
returnedNumber = (char *)[proxyForDirectory teleNumber: personName];
printf("\n%s%s%s%s%s\n", "** (In client) The telephone number for ",

personName, " is:",
returnedNumber, " **");

}
else printf("\n** No name entered **\n");
printf("\n%s\n\n", "** End of client program **");
RELEASE(pool);
return 0;

}

To get this running, all you need do is create two directories, one for the client and one
for the server. Each directory will hold a makefile, the client or server source code, and a
copy of the protocol header file. When the files compile, first run the server and then the
client. You can try this on the same machine, or on two different machines (with GNUstep
installed) on the same LAN. What happens when you run the client without the server?
How would you display a "No Server Connection" warning at the client?

7.2.5 GNUstep Distributed Objects Name Server

You might wonder how the client finds the server, or, rather, how it finds the directory the
server lists itself in.

70 Objective-C GNUstep Base Programming Manual

For the default connection type (a connection only usable on the local host between processes
run by the same person), a private file (or the registry on ms-windows) is used to hold the
name registration information.

For connections using socket ports to communicate between hosts, an auxiliary process will
automatically be started on each machine, if it isn’t running already, that handles this,
allowing the server to register and the client to send a query behind the scenes. This
GNUstep Distributed Objects Name Server runs as ’gdomap’ and binds to port 538. See the
manual page or the HTML “GNUstep Base Tools” documentation for further information.

7.2.6 Look Ma, No Stubs!

One difference you may have noticed in the example we just looked at from other remote
method invocation interfaces such as CORBA and Java RMI was that there are no stub
classes. The source of this great boon is described at the end of this chapter: Chapter 7
[Language Support for Distributed Objects], page 63.

7.3 A More Involved Example

Now we will look at an example called GameServer that uses distributed objects in a
client/server game.

Actually the game itself is not implemented, just its distributed support structure, and
while the code to vend an object and connect to a remote process is similar to that already
shown, the code does show a number of additional techniques that can be used in other
client/server programs. Here are the requirements we will implement:

• When the client attempts to join the game, the server checks that the client is entitled
to join, based on the last time the client played. The rule is: if the client lost the
last game, then they cannot re-play for the next 2 hours; but if the client won the last
game, then they can re-play the game at any time (a reward for winning).

• The server also makes sure the client is not already connected and playing the game
(i.e. they cannot play two games at the same time - that would be cheating).

• In addition to a proxy for the server being obtained at the client, a proxy for the client
is received at the server. This allows two-way messaging, where the client can send
messages to the server and the server can send messages to the client (e.g. the state of
play may be affected by the actions of other players, or by other events at the server).

Two protocols will therefore be required, one for the methods implemented at the server
and one for those implemented at the client.

Have a look at the program code in the following sections and added comments. Can you
work out what is happening at the server and client? If you have any difficulties then refer
to the relevant sections in this manual, or to class documentation here or at the Apple web
site.

../../Tools/Reference/index.html
../Reference/index.html

Chapter 7: Distributed Objects 71

7.3.1 Protocol Adopted at Client

We have chosen GameClient as the name of both the protocol adopted at the client and
the class of the responding client object. The header file declaring this protocol will simply
declare the methods that the class must implement.

@protocol GameClient
- (void) clientMessage: (bycopy NSString *)theMessage;
- (int) clientReply;

// Other methods would be added that
// reflect the nature of the game.

@end

The protocol will be saved as GameClient.h.

7.3.2 Protocol Adopted at Server

We have chosen GameServer as the name of both the protocol adopted at the server and
the class of the responding server object. The header file declaring this protocol will simply
declare the methods that the class must implement.

@protocol GameServer
- (BOOL) mayJoin: (id)client asPlayer: (bycopy NSString*)name;
- (int) startGame: (bycopy NSString*)name;
- (BOOL) endGame: (bycopy NSString*)name;

// Other methods would be added that
// reflect the nature of the game.

@end

The protocol will be saved as GameServer.h.

7.3.3 Code at the Client

The client code contains the main function and the GameClient class declaration and im-
plementation.
The main() function attempts to connect to the server, while the GameClient class adopts
the GameClient protocol.

#include <Foundation/Foundation.h>
#include "GameServer.h"
#include "GameClient.h"

/*
* GameClient class declaration:
* Adopt the GameClient protocol.
*/
@interface GameClient : NSObject <GameClient>
@end

72 Objective-C GNUstep Base Programming Manual

/*
* GameClient class implementation.
*/
@implementation GameClient

/*
* Implement clientMessage: as declared in the protocol.
* The method simply prints a message at the client.
*/
- (void) clientMessage: (NSString*)theMessage
{
printf([theMessage cString]);

}

/*
* Implement clientReply: as declared in the protocol.
* The method simply returns the character entered
* at the client keyboard.
*/
- (int) clientReply
{
return getchar();

}
@end // End of GameClient class implementation.

/*
* The main function of the client program.
*/
int main(int argc, char **argv)
{
CREATE_AUTORELEASE_POOL(pool);
id<GameServer> server;
int result;
NSString *name;
id client;

/*
* The NSUserName() function returns the name of the
* current user, which is sent to the server when we
* try to join the game.
*/
name = NSUserName();

/*
* Create a GameClient object that is sent to
* the server when we try to join the game.
*/

Chapter 7: Distributed Objects 73

client = AUTORELEASE([GameClient new]);

/*
* Try to get a proxy for the root object of a server
* registered under the name ’JoinGame’. Since the host
* is ’*’, we can connect to any server on the local network.
*/
server = (id<GameServer>)[NSConnection
rootProxyForConnectionWithRegisteredName: @"JoinGame"
host: @"*"
usingNameServer: [NSSocketPortNameServer sharedInstance]];

if (server == nil)
{
printf("\n** No Connection to GameServer **\n");
result = 1;

}

/*
* Try to join the game, passing a GameClient object as
* the client, and our user-name as name. The ’client’
* argument will be received as a proxy at the server.
*/
else if ([server mayJoin: client asPlayer: name] == NO)
{
result = 1; // We cannot join the game.

}
else
{
/*
* At this point, we would actually start to play the game.
*/
[server startGame: name]; // Start playing game.
[server endGame: name]; // Finally end the game.
result = 0;

}
RELEASE(pool);
return result;

}

To summarise the code at the client:

• We obtained a proxy for the server and can now communicate with the server using
the methods declared in the GameServer protocol.

• We passed a GameClient object and our user-name to the server (the GameClient
object is received as a proxy at the server). The server can now communicate with the
client using the methods declared in the GameClient protocol.

74 Objective-C GNUstep Base Programming Manual

• When the game is in progress, the server can alter the state of the client object to
reflect the success of the player.

7.3.4 Code at the Server

The server code contains the main function and the GameServer class declaration and
implementation.

The main() function vends the server’s root object and starts the runloop, while the
GameServer class adopts the GameServer protocol. The class also implements methods
that initialise and deallocate the root object’s instance variables (dictionaries that hold
player information).

#include <Foundation/Foundation.h>
#include "GameServer.h"
#include "GameClient.h"

/*
* GameServer class declaration:
* Adopt the GameServer protocol and declare
* GameServer instance variables.
*/
@interface GameServer : NSObject <GameServer>
{
NSMutableDictionary *delayUntil; // Delays to re-joining GameServer.
NSMutableDictionary *currentPlayers; // Proxies to each client.
NSMutableDictionary *hasWon; // Success in game for each player.

}
@end

/*
* GameServer class implementation.
*/
@implementation GameServer

/* Initialise GameServer’s instance variables. */
- (id) init
{
self = [super init];
if (self != nil)
{
/*
* Create a dictionary for a maximum of
* 10 named players that will hold a
* re-joining time delay.
*/
delayUntil = [[NSMutableDictionary alloc]

initWithCapacity: 10];
/*

Chapter 7: Distributed Objects 75

* Create a dictionary that will hold the
* names of these players and a proxy for
* the received client objects.
*/
currentPlayers = [[NSMutableDictionary alloc]

initWithCapacity: 10];

/*
* Create a dictionary that will record
* a win for any of these named players.
*/
hasWon = [[NSMutableDictionary alloc]

initWithCapacity: 10];
}

return self;
}

/* Release GameServer’s instance variables. */
- (void) dealloc
{
RELEASE(delayUntil);
RELEASE(currentPlayers);
RELEASE(hasWon);
[super dealloc];

}

/*
* Implement mayJoin:: as declared in the protocol.
* Adds the client to the list of current players.
* Each player is represented at the server by both
* name and by proxy to the received client object.
* A player cannot join the game if they are already playing,
* or if joining has been delayed until a later date.
*/
- (BOOL) mayJoin: (id)client asPlayer: (NSString*)name
{
NSDate *delay; // The time a player can re-join the game.
NSString *aMessage;

if (name == nil)
{
NSLog(@"Attempt to join nil user");
return NO;

}

/* Has the player already joined the game? */
if ([currentPlayers objectForKey: name] != nil)

76 Objective-C GNUstep Base Programming Manual

{
/* Inform the client that they cannot join. */
aMessage = @"\nSorry, but you are already playing GameServer!\n";
[client clientMessage: aMessage];
return NO;

}

/* Get the player’s time delay for re-joining. */
delay = [delayUntil objectForKey: name];

/*
* Can the player join the game? Yes if there is
* no restriction or if the time delay has passed;
* otherwise no, they cannot join.
*/
if (delay == nil || [delay timeIntervalSinceNow] <= 0.0)
{
/* Remove the old restriction on re-joining the game. */
[delayUntil removeObjectForKey: name];

/* Add the player to the list of current players. */
[currentPlayers setObject: client forKey: name];
[hasWon setObject: @"NO" forKey: name]; // They’ve not won yet.

/* Inform the client that they have joined the game. */
aMessage = @"\nWelcome to GameServer\n";
[client clientMessage: aMessage];
return YES;

}
else
{
/* Inform the client that they cannot re-join. */
aMessage = @"\nSorry, you cannot re-join GameServer yet.\n";
[client clientMessage: aMessage];
return NO;

}
}

/*
* Implement startGame: as declared in the protocol.
* Simply ask the player if they want to win, and get
* there reply.
*/
- (int) startGame: (NSString *)name
{
NSString *aMessage;
id client;

Chapter 7: Distributed Objects 77

int reply;

client = [currentPlayers objectForKey: name];

aMessage = @"\nDo you want to win this game? (Y/N <RET>) ... ";
[client clientMessage: aMessage];

reply = [client clientReply];
if (reply == ’y’ || reply == ’Y’)
[hasWon setObject: @"YES" forKey: name]; // They win.

else [hasWon setObject: @"NO" forKey: name]; // They loose.
return 0;

}

/*
* Implement endGame: as declared in the protocol.
* Removes a player from the game, and either sets
* a restriction on the player re-joining or removes
* the current restriction.
*/
- (BOOL) endGame: (NSString*)name
{
id client;
NSString *aMessage, *yesOrNo;
NSDate *now, *delay;
NSTimeInterval twoHours = 2 * 60 * 60; // Seconds in 2 hours.

if (name == nil)
{
NSLog(@"Attempt to end nil user");
return NO;

}

now = [NSDate date];
delay = [now addTimeInterval: twoHours];
client = [currentPlayers objectForKey: name];
yesOrNo = [hasWon objectForKey: name];

if ([yesOrNo isEqualToString: @"YES"]) // Has player won?
{
/*
* Player wins, no time delay to re-joining the game.
* Remove any re-joining restriction and send
* a message to the client.
*/
[delayUntil removeObjectForKey: name];
aMessage = @"\nWell played: you can re-join GameServer at any time.\n";

78 Objective-C GNUstep Base Programming Manual

[client clientMessage: aMessage];

}
else // Player lost
{
/*
* Set a time delay for re-joining the game,
* and send a message to the client.
*/
[delayUntil setObject: delay forKey: name];
aMessage = @"\nYou lost, but you can re-join GameServer in 2 hours.\n";
[client clientMessage: aMessage];

}

/* Remove the player from the current game. */
[currentPlayers removeObjectForKey: name];
[hasWon removeObjectForKey: name];
return YES;

}

@end // End of GameServer class implementation

/*
* The main function of the server program simply
* vends the root object and starts the runloop.
*/
int main(int argc, char** argv)
{
CREATE_AUTORELEASE_POOL(pool);
GameServer *server;
NSSocketPort *port;
NSConnection *connXion;

server = AUTORELEASE([GameServer new]);
port = [NSSocketPort port];
connXion = [NSConnection connectionWithReceivePort: port sendPort: port];
[connXion setRootObject: server];
[connXion registerName: @"JoinGame"
withNameServer: [NSSocketPortNameServer sharedInstance]];

[[NSRunLoop currentRunLoop] run];
RELEASE(pool);
return 0;

}

To summarise the code at the server:

• We vend the server’s root object and start a runloop, allowing clients to connect with

Chapter 7: Distributed Objects 79

the server.

• When we receive a proxy for a client object, we communicate with that client using
methods declared in the ClientServer protocol.

• We create three dictionary objects, each referenced by player name. currentUsers
holds proxies for each of the current players; delayUntil holds times when each player
can re-join the game; and hasWon holds a string for each player, which is set to "YES"
if the player wins.

• When the game is in progress, the server can alter the state of each client object to
reflect the success of each player.

I hope you managed to understand most of the code in this example. If you are reading
the on-screen version, then you can copy and paste the code to suitably named files, cre-
ate makefiles, and then make and run each program. What message is displayed if you
immediately try to re-join a game after losing? And after winning?
Exercise: Modify the server code so that the server records the number of wins for each
player, and displays this information at both the start and end of each game.

7.4 Language Support for Distributed Objects

Objective-C provides special ’type’ qualifiers that can be used in a protocol to control
the way that message arguments are passed between remote processes, while at run time,
the run-time system transparently uses what is known as ’forward invocation’ to forward
messages to a remote process. (See Chapter 5 [Forwarding], page 49.)

7.4.1 Protocol Type Qualifiers

When message arguments are passed by value then the receiving method can only alter the
copy it receives, and not the value of the original variable. When an argument is passed by
reference (as a pointer), the receiving method has access to the original variable and can
alter that variable’s data. In this case the argument is effectively passed ’in’ to the method,
and then passed ’out’ of the method (on method return).
When an argument is passed by reference to a remote object, the network must handle this
two-way traffic, whether or not the remote object modifies the received argument.
Type qualifiers can be used in a protocol to control the way these messages are handled, and
to indicate whether or not the sending process will wait for the remote process to return.
• The oneway qualifier is used in conjunction with a void return type to inform the run-

time system that the sending process does not need to wait for the receiving method to
return (known as ’asynchronous’ messaging). The protocol declaration for the receiving
method would look something like this:

- (oneway void)noWaitForReply;

80 Objective-C GNUstep Base Programming Manual

• The in, out and inout qualifiers can be used with pointer arguments to control the
direction in which an argument is passed. The protocol declaration for the receiving
methods would look something like this:

/*
* The value that ’number’ points to will be passed in to the remote process.
* (No need to return the argument’s value from the remote process.)
*/
- setValue: (in int *)number;

/*
* The value that ’number’ points to will be passed out of the remote process.
* (No need to send the argument’s value to the remote process.)
*/
- getValue: (out int *)number;

/*
* The value that ’number’ points to is first passed in to the remote
* process, but will eventually be the value that is passed out of the
* remote process. (Send and return the argument’s value.)
*/
- changeValue: (inout int *)number;

Passing of arguments by reference is very restricted in Objective-C. it applies only to
pointers to C data types, not to objects, and except for the special case of a pointer to
a nul terminated C string (char*) the pointer is assumed to refer to a single data item
of the specified type.

/*
* A method passing an unsigned short integer by reference.
*/
- updateCounter: (inout unsigned shortn *)value;

/*
* A method passing a structure by reference.
*/
- updateState: (inout struct stateInfo *)value;

/*
* As a special case, a char (or equivalent typedef) passed by reference
* is assumed to be a nul terminated string ... there is no way to pass
* a single character by reference:
*/
- updateBuffer: (inout char *)str;

• The bycopy and byref qualifiers can be used in a protocol when the argument or return
type is an object.

Chapter 7: Distributed Objects 81

An object is normally passed by reference and received in the remote process as a
proxy. When an object is passed by copy, then a copy of the object will be received
in the remote process, allowing the remote process to directly interact with the copy.
Protocol declarations would look something like this:

/*
* Copy of object will be received in the remote process.
*/
- sortNames: (bycopy id)listOfNames;

/*
* Copy of object will be returned by the remote process.
*/
- (bycopy id)returnNames;

By default, large objects are normally sent byref, while small objects like NSStrings
are normally sent bycopy, but you cannot rely on these defaults being adopted and
should explicitly state the qualifier in the protocol.

The bycopy qualifier can also be used in conjunction with the out qualifier, to indicate
that an object will be passed out of the remote process by copy rather than by proxy
(no need to send the object).

/*
* The object will not be received in the remote process, but the object
* will be returned bycopy.
*/
- sortAndReturn: (bycopy out id *)listOfNames;

You should be aware that some classes ignore the bycopy qualifier and the object will
be sent by reference. The bycopy qualifier will also be ignored if the remote process
does not have the class of the object in its address space, since an object’s instance
variables are accessed through the object’s methods.

When a copy of an object is sent to a remote process, only the object’s instance variables
are sent and received (an object’s methods exist in the address space of the object’s
class, not in the address space of the individual object).

7.4.2 Message Forwarding

If you have used other remote invocation mechanisms such as CORBA or Java RMI, you
may have noticed a big difference from these in the GNUstep Distributed Object paradigm –
there are no “stub” classes, either on the client or the server. This tremendously simplifies

82 Objective-C GNUstep Base Programming Manual

the use of remote invocation and is possible due to the Objective-C message-forwarding
facility (Chapter 5 [Forwarding], page 49).
In GNUstep, there are proxies on the client and server side that handle network communica-
tions and serialization/deserialization of arguments and return values just as in CORBA and
RMI, but when it comes to responding to the client and server protocol method calls them-
selves, they are intercepted through the use of the forwardInvocation: method, where
they can be passed on to the registered client and server objects through the ordinary
Objective-C message sending mechanism.

7.5 Error Checking

When dealing with distributed objects your code must be able to handle the following
situations: failure to vend the server object, exceptions raised at run-time, and failure of
the network connection.

7.5.1 Vending the Server Object

When vending the server object, your code must be able to handle the situation in which
the network does not accept the proposed registered name for the server.

7.5.2 Catching Exceptions

There are two situations to consider.
• An NSPortTimeoutException is raised.

This exception is raised if a message takes too long to arrive at the remote process, or
if a reply takes too long to return. This will happen if the remote process is busy, has
hung, or if there is a problem with the network. The best way to handle the exception
is to close the connection to the remote process.

• An exception is raised in the remote process while the remote process is executing a
method.

In most cases you can deal directly with these exceptions in the process in which they
were raised; i.e. without having to consider the network connection itself.

7.5.3 The Connection Fails

You can register an observer object to receive a notification, in the form of a
connectionDidDie: message, when a registered connection fails. The argument to this
message will be an NSNotification object that returns the failed connection when it
receives an object message. See Chapter 8 [Event-Based Communications], page 83 for
more information on notifications.
To receive this ’notification’ the observer must implement the connectionDidDie: method,
but can be an instance of any class. The observer can then handle the failure gracefully,
by releasing any references to the failed connection and releasing proxies that used the
connection. Registering an object to receive this notification is described in more detail in
the NSConnection class documentation.

Chapter 8: Base Library 83

8 Base Library

The GNUstep Base library is an implementation of the OpenStep Foundation, a nongraph-
ical API supporting for data management, network and file interaction, date and time
handling, and more. Much of the API consists of classes with defined methods, but unlike
many “class libraries” it also includes functions and macros when these are more appropriate
to the functionality.
Note that many other APIs developed subsequently to OpenStep are also called “Foun-
dation” – the Java standard classes and the Microsoft Windows C++ class library are two
prominent examples. In OpenStep, however, the term only applies to a non-graphical li-
brary; the graphical component is referred to as the Application Kit, or “AppKit” for short.
Although the OpenStep API underwent several refactorings subsequent to its first release as
part of NeXTstep, deprecated and superseded classes and functions have not been retained.
Therefore the library still boasts a minimal footprint for its functionality.
In some cases, GNUstep has supplemented the OpenStep API, not to provide alternative
means of achieving the same goals, but to add new functionality, usually relating to tech-
nology that did not exist when the OpenStep specification was finalized, but has not, for
whatever reason, been added by Apple to the Cocoa APIs. These additions are called, ap-
propriately enough, the Base Additions library, and include classes, functions, and macros.
XML parsing facilities, for example, are provided as part of this library.
In addition, methods are sometimes added to Foundation classes. These are specially
marked in the documentation and can even be excluded at compile time (a warning will be
generated if you try to use them) if you are writing code intended to be ported to OpenStep
or Cocoa compliant systems. In addition, Cocoa has made additions to OpenStep and these
are marked as “MacOS-X”. For information on how to set compile flags, see Appendix E
[Compliance to Standards], page 111.
In deciding whether to use a given API, you need to weigh the likelihood you will need
to port the application to a platform where it will not be available, and in that case, how
much effort would be required to do without the API. If you are aiming for full portability
from the start (only a recompile needed), then you should of course avoid APIs that will
not be available. However in other cases it can be better to use whichever APIs are best
suited initially so that early development and debugging will be as efficient as possible – as
long as major redesign would not be required to later avoid these APIs.
Below, the Base and Base Additions APIs are covered in overview fashion, organized ac-
cording to functionality. For detailed documentation on individual classes and functions,
you should consult the GSDoc API references for Base and Base Additions. It may be
helpful, when reading this chapter, to keep a copy of this open in another browser window
for reference.

8.1 Copying, Comparing, Hashing Objects

Often in object-oriented code you need to make a duplicate copy of an existing object. The
NSObject method -(id) copy provides a standard means of acquiring a copy of the object.
The depth of the copy is not defined. That is, if an object has instance variables or other
references to other objects, they may either themselves be copied or just the references
to them will be copied. The root class NSObject does not implement the copy method

../Reference/index.html
../../BaseAdditions/Reference/index.html

84 Objective-C GNUstep Base Programming Manual

directly; instead it calls the -copyWithZone method, which is the sole method defined in
the NSCopying informal protocol. NSObject does not implement this protocol. If you want
objects of your class to support copying, you must implement this method yourself. If it is
not implemented, the -copy method will raise an exception if you call it.
There is a related method -(id) mutableCopy (and an NSMutableCopying informal proto-
col with a mutableCopyWithZone method) which will be explained in the following section.
GNUstep, largely via the NSObject class, provides a basic framework for comparing objects
for equality and ordering, used for sorting, indexing, and other programming tasks. These
operations are also used in several crucial places elsewhere within the base library itself.
For example, containers such as lists, sets, and hash maps are discussed in the next section
utilize these methods.
The - (BOOL) isEqual method in NSObject is useful when you want to compare objects
with one another:

if ([anObject isEqual: anotherObject])
{
// do something ...

}

The default implementation returns YES only if the two objects being compared are the
exact same object (which is the same as the result that would be returned using ’==’ to
perform the comparison). Sometimes it is useful to have two objects to be equal if their
internal state is the same, as reflected in instance variables, for example. In this case, you
can override isEqual in your class to perform such a comparison.
The -(unsigned int)hash method is useful for indexing objects, and should return the
same value for two objects of the same class that isEqual each other. The same reasoning
applies as for the isEqual method – if you want this to depend on internal state rather
than the identity of the object itself, override it. The default hash value is based on the
memory address occupied by the object.
The -(NSComparisonResult) compare: (id)object method is used in Cocoa for compar-
ing objects. It should return NSOrderedAscending if the receiver is less than the argument,
NSOrderedDescending if it is greater, otherwise NSOrderedSame. Note that this is not
meaningful for many types of objects, and is actually deprecated in GNUstep for this rea-
son.
The -(NSString *) description method in NSObject returns a short description of the
object, often used for debugging. The default implementation lists the object’s class and
memory location. If you want other information you can override it.
The methods discussed in this section are all very similar to counterparts in Java: the
equals and hashCode methods, and the Comparable interface.

8.2 Object Containers

GNUstep defines three major utility classes for holding collections of other objects. NSArray
is an ordered collection of objects, each of which may occur in the collection multiple times.
NSSet is an unordered collection of unique objects (according to isEqual and/or hash).
NSDictionary is an unordered collection of key-value pairs. The keys form a set (and must
be unique), however there are no restrictions on the collection of values. The -hash and

Chapter 8: Base Library 85

-isEqual NSObject methods discussed above are used by collection instances to organize
their members. All collections retain their members (see Chapter 3 [Objects], page 23).

Unlike container APIs in some other languages, notably Java, instances of these GNUstep
classes are all immutable – once created, you cannot add or remove from them. If you
need the ability to make changes (often the case), use the mutable classes NSMutableArray,
NSMutableSet, and NSMutableDictionary. The -mutableCopy method mentioned in the
previous section will return the mutable version of a container regardless of whether the
original was mutable or not. Likewise, the -copy method returns an immutable version.
You should generally use immutable variants of objects when you don’t need to modify
them, because their implementations are more efficient. Often it is worthwhile to convert
a mutable object that has just been built into an immutable one if it is going to be heavily
accessed.

Also unlike container objects in Java, GNUstep containers possess utility methods. For
example, Arrays can sort their members, or send a message to each member individually
(like the map function in Lisp). Sets can determine whether they are equal to or subsets of
other sets. Dictionaries can save to and restore themselves from specially formatted files.

In addition to the three container types already mentioned, there is a fourth, NSCountedSet.
This is an unordered collection whose elements need not be unique, however the number of
times a given unique element has been added is tracked. This behavior is also known as bag
semantics.

All collection classes support returning an NSEnumerator object which will enumerate over
the elements of the collection. Note that if a mutable collection is modified while an enu-
merator is being used, the results are not defined.

Collections do not allow nil values or keys, but you can explicitly represent a nil object
using the special NSNull class. You simply use the singleton returned from [NSNull null].

The four container types just described handle objects, but not primitives such as float
or int. For this, you must use an NSHashTable or NSMapTable. Despite their names, these
are not classes, but data types. A set of functions is defined for dealing with them. Each
can store and retrieve arbitrary pointers keyed by other arbitrary pointers. However you
are responsible for implementing the hashing yourself. To create an NSHashTable, use the
function NSCreateHashtable. NSHashInsert and NSHashGet are the major functions, but
there are many others. There is a mostly parallel but more sophisticated set of functions
dealing with NSMapTables.

8.3 Data and Number Containers

The data containers discussed in the previous section, with the exception of NSHashTable
and NSMapTable, can store objects, but not primitive types such as ints or floats. The
NS...Table structures are not always appropriate for a given task. For this case, GNUstep
offers two alternatives.

8.3.1 NSData

The NSData and NSMutableData classes manage a buffer of bytes as an object. The contents
of the buffer can be anything that can be stored in memory, a 4-dimensional array of double
for example (stored as a linear sequence). Optionally, objects of these classes can take care

86 Objective-C GNUstep Base Programming Manual

of the memory management for the buffer, growing it as needed and freeing it when they
are released.

8.3.2 NSValue

The NSValue class can wrap a single primitive value as an object so it can be used in
the containers and other places where an object reference is needed. Once initialized, an
NSValue is immutable, and there is no NSMutableValue class. You initialize it by giving it
a pointer to the primitive value, and you should be careful this does not get freed until after
the NSValue is no longer used. You can specify to the NSValue what type the primitive is
so this information can be accessed later:

int n = 10;
NSValue *theValue = [NSValue value: &n withObjCType: @encode(int)];
// ...

int *m = (int *) [theValue pointerValue];

Here, @encode is a compile-time operator that converts the data type into a string (char *)
code used at runtime to refer to the type. Object ids can also be stored within NSValues if
desired. Note that in the above case, the NSValue will be pointing to invalid data once the
local variable n goes out of scope.

If you want to wrap int or other numeric values, you should use NSNumber (a subclass
of NSValue) instead. This maintains its own copy of the data and provides convenience
methods for accessing the value as a primitive.

int n = 10;
NSNumber *theNumber = [NSNumber numberWithInt: n];
// ...

int m = [theNumber intValue];
float f = [theNumber floatValue]; // this is also valid

Notice that n ’s value is used in the initialization, not a pointer to it.

8.3.3 NSNumber

NSNumber has a subclass called NSDecimalNumber that implements a number of methods
for performing decimal arithmetic to much higher precision than supported by ordinary
long double. The behavior in terms of rounding choices and exception handling may
be customized using the NSDecimalNumberHandler class. Equivalent functionality to the
NSDecimalNumber class may be accessed through functions, mostly named NSDecimalXXX.
Both the class and the functions use a structure also called NSDecimal:

typedef struct {
signed char exponent; // Signed exponent - -128 to 127
BOOL isNegative; // Is this negative?
BOOL validNumber; // Is this a valid number?
unsigned char length; // digits in mantissa.
unsigned char cMantissa[2*NSDecimalMaxDigit];

}

Instances can be initialized using the NSDecimalFromString(NSString *) function.

Chapter 8: Base Library 87

8.3.4 NSRange, NSPoint, NSSize, NSRect

There are also a few types (not classes) for representing common composite structures.
NSRange represents an integer interval. NSPoint represents a floating point 2-d cartesian
location. NSSize represents a 2-d floating point extent (width and height). NSRect contains
a lower-left point and an extent. A number of utility functions are defined for handling
rectangles and points.

8.4 Date/Time Facilities

GNUstep contains the NSDate class and the NSCalendarDate classes for representing and
handling dates and times. NSDate has methods just relating to times and time differences
in the abstract, but not calendar dates or time zones. These features are added in the
NSCalendarDate subclass. The NSTimeZone class handles time zone information.

8.5 String Manipulation and Text Processing

Basic string handling in the GNUstep Base library was covered in Chapter 2 [Strings in
GNUstep], page 11. Here, we introduce a number of additional string and text processing
facilities provided by GNUstep.

8.5.1 NSScanner and Character Sets

The NSScanner class can be thought of as providing a combination of the capabilities of the
C sscanf() function and the Java StringTokenizer class. It supports parsing of NSStrings
and extraction of numeric values or substrings separated by delimiters.
NSScanner works with objects of a class NSCharacterSet and its subclasses
NSMutableCharacterSet, NSBitmapCharSet, and NSMutableBitmapCharSet, which
provide various means of representing sets of unicode characters.

8.5.2 Attributed Strings

Attributed strings are strings that support the association of attributes with ranges of char-
acters within the string. Attributes are name-value pairs represented by an NSDictionary
and may include standard attributes (used by GNUstep GUI classes for font and other char-
acteristics during rendering) as well as programmer-defined application specific attributes.
The classes NSAttributedString and NSMutableAttributedString represent attributed
strings. They are not subclasses of NSString, though they bundle an instance of one.

8.5.3 Formatters

Formatters are classes providing support for converting complex values into text strings.
They also provide some support for user editing of strings to be converted back into object
equivalents. All descend from NSFormatter, which defines basic methods for obtaining
either an attributed string or a regular string for an object value. Specific classes include
NSDateFormatter for NSDate objects, NSNumberFormatter for NSNumber objects. Instances
of these classes can be customized for specific display needs.

8.6 File Handling

A number of convenience facilities are provided for platform-independent access to the file
system. The most generally useful is the NSFileManager class, which allows you to read

88 Objective-C GNUstep Base Programming Manual

and save files, create/list directories, and move or delete files and directories. In addition
to simply listing directories, you may obtain an NSDirectoryEnumerator instance from it,
a subclass of NSEnumerator which provides a full listing of all the files beneath a directory
and its subdirectories.

If you need to work with path names but don’t need the full NSFileManager
capabilities, NSString provides a number of path-related methods, such as -
stringByAppendingPathComponent: and -lastPathComponent. You should use these
instead of working directly with path strings to support cross-platform portability.

NSFileHandle is a general purpose I/O class which supports reading and writing to both
files and network connections, including ordinary and encrypted (SSL) socket connections,
and the standard in / standard out streams familiar from Unix systems. You can obtain
instances through methods like +fileHandleForReadingAtPath:(NSString *)path and
+fileHandleAsServerAtAddress:(NSString *)address service:(NSString *)service
protocol:(NSString *)protocol. The network-related functions of NSFileHandle
(which are a GNUstep extension not included in Cocoa) will be covered in a later section.
Note this class also supports gzip compression for reading and writing.

Finally, GNUstep also provides some miscellaneous filesystem-related utility functions, in-
cluding NSTemporaryDirectory() and NSHomeDirectoryForUser().

8.7 Persistence and Serialization

GNUstep provides robust facilities for persisting objects to disk or sending them over a net-
work connection (to implement Chapter 7 [Distributed Objects], page 63). One class of facil-
ities is referred to as property list serialization, and is only usually used for NSDictionary
and NSArray container objects, and NSNumber, NSData, NSString, and NSDate member
objects. It utilizes primarily text-based formats.

Saving to and loading back from a serialized property list representation will preserve values
but not necessarily the classes of the objects. This makes property list representations robust
across platforms and library changes, but also makes it unsuitable for certain applications.
Archiving, the second class of GNUstep persistence facilities, provides for the persistence of
a graph of arbitrary objects, with references to one another, taking care to only persist each
individual object one time no matter how often it is referred to. Object class identities are
preserved, so that the behavior of a reloaded object graph is guaranteed to be the same as
the saved one. On the other hand, the classes for these objects must be available at load
time.

8.7.1 Property List Serialization

Serialized property list representations (sometimes referred to as “plists”) are typically saved
and restored using methods in collection classes. For example the NSDictionary class has
-writeToFile:atomically: to save, +dictionaryWithContentsOfFile to restore, and
NSArray has similar methods. Alternatively, if you wish to save/restore individual NSData
or other objects, you can use the NSPropertyListSerialization class. (There are also
NSSerializer and NSDeserializer classes, but these are deprecated in Mac OS X and are
not really needed in GNUstep either, so should not be used.)

Chapter 8: Base Library 89

Serialized property lists can actually be written in one of three different formats – plain text,
XML, and binary. Interconversion amongst these is possible using the pldes and plser
command-line tools (see the tools reference).

8.7.2 Archives

Archiving utilizes a binary format that is cross-platform between GNUstep implementations,
though not between GNUstep and Mac OS X Cocoa. Archiving, like serialization in Java,
is used both for saving/restoring objects on disk and for interprocess communications with
Chapter 7 [Distributed Objects], page 63. For an object to be archivable, it must adopt the
NSCoding protocol. The coding process itself is managed by instances of the NSCoder class
and its subclasses:

NSCoder Base class, defines most of the interface used by the others.

NSArchiver, NSUnarchiver
Sequential archives that can only be saved and restored en masse.

NSKeyedArchiver, NSKeyedUnarchiver
Random access archives that can be read from and written to on an individual-
object basis and provide more robust integrity in the face of class changes.

NSPortCoder
Used for Chapter 7 [Distributed Objects], page 63.

The basic approach to accessing or creating an archive is to use one of the convenience
methods in an NSCoder subclass:

+ (BOOL) archiveRootObject: (id)object toFile: (NSString *)file
Save object and graph below it to file. ’YES’ returned on success. Both
NSArchiver and NSKeyedArchiver support.

+ (NSData *) archivedDataWithRootObject: (id)object
Save object and graph below it to a byte buffer. Both NSArchiver and
NSKeyedArchiver suport.

+ (id) unarchiveObjectWithFile: (NSString *)file
Load object graph from file. Both NSUnarchiver and NSKeyedUnarchiver
support.

+ (id) unarchiveObjectWithData: (NSData *)data
Load object graph from byte buffer. Both NSUnarchiver and
NSKeyedUnarchiver support.

To obtain more specialized behavior, instantiate one of the classes above and customize
it (through various method calls) before instigating the primary archiving or unarchiving
operation.
From the perspective of the objects being archived, the NSCoding protocol declares two
methods that must be implemented:

-(void) encodeWithCoder: (NSCoder *)encoder
This message is sent by an NSCoder subclass or instance to request the object
to archive itself. The implementation should send messages to encoder to save
its essential instance variables. If this is impossible (for whatever reason) an
exception should be raised.

../../Tools/Reference/index.html

90 Objective-C GNUstep Base Programming Manual

-(id) initWithCoder: (NSCoder *)decoder
This message is sent by an NSCoder subclass or instance to request the object
to restore itself from an archive. The implementation should send messages to
decoder to load its essential instance variables. An exception should be raised
if there is a problem restoring state.

Here is an example NSCoding implementation:

@interface City : PoliticalUnit
{
private
float latitude;
float longitude;
CensusData *censusData;
State *state;
}

// ...
@end

...

@implementation City

- (void) encodeWithCoder: (NSCoder *)coder
{
[super encodeWithCoder:coder]; // always call super first

if (![coder allowsKeyedCoding])
{
[coder encodeValueOfObjCType: @encode(float) at: &latitude];
[coder encodeValueOfObjCType: @encode(float) at: &longitude];
[coder encodeObject: censusData];
[coder encodeConditionalObject: state];

}
else
{
[coder encodeFloat: latitude forKey: @"City.latitude"];
[coder encodeFloat: longitude forKey: @"City.longitude"];
[coder encodeObject: censusData forKey: @"City.censusData"];
[coder encodeConditionalObject: state forKey: @"City.state"];

}
return;

}

- (id) initWithCoder: (NSCoder *)coder
{
self = [super initWithCoder:coder]; // always assign ’self’ to super init..

Chapter 8: Base Library 91

if (![coder allowsKeyedCoding])
{
// Must decode keys in same order as encodeWithCoder:
[coder decodeValueOfObjCType: @encode(float) at: &latitude];
[coder decodeValueOfObjCType: @encode(float) at: &longitude];
censusData = [[coder decodeObject] retain];
state = [[coder decodeObject] retain];

}
else
{
// Can decode keys in any order
censusData = [[coder decodeObjectForKey: @"City.censusData"] retain];
state = [[coder decodeObjectForKey: @"City.state"] retain];
latitude = [coder decodeFloatForKey: @"City.latitude"];
longitude = [coder decodeFloatForKey: @"City.longitude"];

}
return self;

}

// ...

@end

The primary wrinkle to notice here is the check to [coder allowsKeyedCoding]. The
object encodes and decodes its instance variables using keys if this returns ’YES’. Keys
must be unique within a single inheritance hierarchy – that is, a class may not use keys the
same as its superclass or any of its ancestors or sibling classes.

Keyed archiving provides robustness against class changes and is therefore to be preferred
in most cases. For example, if instance variables are added at some point to the City class
above, this will not prevent earlier versions of the class from restoring data from a later one
(they will just ignore the new values), nor does it prevent a later version from initializing
from an earlier archive (it will not find values for the added instance variables, but can set
these to defaults).

Finally, notice the use of encodeConditionalObject above for state, in contrast to
encodeObject for census data. The reason the two different methods are used is that the
City object owns its census data, which is an integral part of its structure, whereas the
state is an auxiliary reference neither owned nor retained by City. It should be possible
to store the cities without storing the states. Thus, the encodeConditionalObject
method is called, which only stores the State if it is already being stored unconditionally
elsewhere during the current encoding operation.

Note that within a given archive, an object will be written only once. Subsequent requests
to write the same object are detected and a reference is written rather than the full object.

92 Objective-C GNUstep Base Programming Manual

8.8 Utility

The GNUstep Base library provides a number of utility classes that don’t fall under any
other function category.

The NSUserDefaults class provides access to a number of system- and user-dependent set-
tings that should affect tool and application behavior. You obtain an instance through
sending [NSUserDefaults standardUserDefaults]. The instance provides access to set-
tings indexed by string keys. The standard keys used are documented here. Users can
adjust settings for particular keys using the defaults command.

The NSProcessInfo class provides access to certain information about the system envi-
ronment such as the operating system and host name. It also provides support for pro-
cess logging (see Chapter 6 [Logging], page 55). You obtain an instance through sending
[NSProcessInfo processInfo].

The NSUndoManager class provides a general mechanism for supporting undo of user opera-
tions in applications. Essentially, it allows you to store sequences of messages and receivers
that need to be invoked to undo or redo an action. The various methods in this class pro-
vide for grouping of sets of actions, execution of undo or redo actions, and tuning behavior
parameters such as the size of the undo stack. Each application entity with its own editing
history (e.g., a document) should have its own undo manager instance. Obtain an instance
through a simple [[NSUndoManager alloc] init] message.

The NSProtocolChecker and NSProxy classes provide message filtering and forwarding
capabilities. If you wish to ensure at runtime that a given object will only be sent messages
in a certain protocol, you create an NSProtocolChecker instance with the protocol and the
object as arguments:

id versatileObject = [[ClassWithManyMethods alloc] init];
id narrowObject = [NSProtocolChecker protocolCheckerWithTarget: versatileObject

protocol: @protocol(SomeSpecificProtocol)];
return narrowObject;

This is often used in conjunction with distributed objects to expose only a subset of an ob-
jects methods to remote processes. The NSProxy class is another class used in conjunction
with distributed objects. It implements no methods other than basic NSObject proto-
col methods. To use it, create a subclass overriding -(void) forwardInvocation: and -
(NSMethodSignature) methodForSelector:. By appropriate implementations here, you
can make an NSProxy subclass instance act like an instance of any class of your choosing.

The NSBundle class provides support for run-time dynamic loading of libraries and ap-
plication resources, usually termed “Bundles”. A bundle consists of a top-level directory
containing subdirectories that may include images, text files, and executable binaries or
shared libraries. The “.app” directory holding a NeXTstep/OpenStep/GNUstep/Cocoa
application is actually a bundle, as are the “Frameworks” containing shared libraries to-
gether with other resources. Bundles and frameworks are covered in Appendix B [Bundles
and Frameworks], page 103.

8.9 Notifications

GNUstep provides a framework for sending messages between objects within a process called
notifications. Objects register with an NSNotificationCenter to be informed whenever

../../../User/Gui/DefaultsSummary.html
../../Tools/Reference/defaults.html

Chapter 8: Base Library 93

other objects post NSNotifications to it matching certain criteria. The notification center
processes notifications synchronously – that is, control is only returned to the notification
poster once every recipient of the notification has received it and processed it. Asynchronous
processing is possible using an NSNotificationQueue. This returns immediately when a
notification is added to it, and it will periodically post the oldest notification on its list
to the notification center. In a multithreaded process, notifications are always sent on the
thread that they are posted from.
An NSNotification consists of a string name, an object, and optionally a dictionary which
may contain arbitrary associations. Objects register with the notification center to receive
notifications matching either a particular name, a particular object, or both. When an
object registers, it specifies a message selector on itself taking an NSNotification as its
sole argument. A message will be sent using this selector whenever the notification center
receives a matching notification in a post.
Obtain a notification center instance using NSNotificationCenter +defaultCenter. An
NSDistributedNotificationCenter may be used for interprocess communication on the
same machine. Interprocess notification will be slower than within-process notification, and
makes use of the gdnc command-line tool.
Notifications are similar in some ways to events in other frameworks, although they are
not used for user interface component connections as in Java (message forwarding and the
target-action paradigm are used instead). In addition, the GNUstep GUI (AppKit) library
defines an NSEvent type for representing mouse and keyboard actions.

8.10 Networking and RPC

GNUstep provides some general network-related functionality, as well as classes supporting
Chapter 7 [Distributed Objects], page 63 and related forms of inter-process communication.

8.10.1 Basic Networking

GNUstep provides the following classes handling basic network communications:

NSHost Holds and manages information on host names and IP addresses. Use the
+currentHost, +hostWithName:, or +hostWithAddress: class methods to ob-
tain an instance.

NSFileHandle
On Unix, network connections are treated analogously to files. This abstrac-
tion has proven very useful, so GNUstep supports it in the NSFileHandle
class, even on non-Unix platforms. You may use the class methods
+fileHandleAsServerAtAddress:(NSString *)address service:(NSString
*)service protocol:(NSString *)protocol and corresponding client
methods to access one side of a connection to a port on a networked machine.
(To use pipes, see the next section.)

NSURL Provides methods for working with URLs and the data accessible through
them. Once an NSURL is constructed, data may be loaded asynchronously
through NSURL -loadResourceDataNotifyingClient:usingCache: or
synchronously through NSURL -resourceDataUsingCache:. It can also
be obtained through NSString +stringWithContentsOfURL: or NSData
+dataWithContentsOfURL:.

../../Tools/Reference/gdnc.html

94 Objective-C GNUstep Base Programming Manual

NSURLHandle
This class provides additional control over the URL contents loading process.
Obtain an instance through NSURL -URLHandleUsingCache:.

8.10.2 Remote Process Communications

GNUstep provides a number of classes supporting Chapter 7 [Distributed Objects], page 63
and related forms of inter-process communication. In most cases, you only need to know
about the NSConnection class, but if you require additional control over distributed objects,
or if you wish to use alternative forms of communications such as simple messaging, you
may use the classes listed here.

NSConnection
This is the primary class used for registering and acquiring references to dis-
tributed objects.

NSDistantObject
When a client acquires a remote object reference through NSConnection
+rootProxyForConnectionWithRegisteredName:, the returned object is an
instance of this class, which is a subclass of NSProxy. Since usually you will
just cast your reference to this to a particular protocol, you do not need to
refer to the NSDistantObject class directly.

NSPort, NSPortMessage
Behind the scenes in distributed objects, NSPort objects handle both network
communications and serialization/deserialization for sending messages to re-
mote objects and receiving the results. The actual data sent over the network
is encapsulated by NSPortMessage objects, which consist of two ports (sender
and receiver) and a body consisting of one or more NSData or NSPort objects.
(Data in the NSData must be in network byte order.)

NSSocketPort, NSMessagePort
If you want to send custom messages between processes yourself, you can use
these classes. NSSocketPort can communicate to processes on the same or
remote machines. NSMessagePort is optimized for local communications only.

NSPortNameServer, NSSocketPortNameServer, NSMessagePortNameServer
The NSPortNameServer class and subclasses are used behind the scenes by the
distributed objects system to register and look up remotely-accessible objects.

8.11 Threads and Run Control

A GNUstep program may initiate independent processing in two ways – it can start up a
separate process, referred to as a task, much like a fork in Unix, or it may spawn multiple
threads within a single process. Threads share data, tasks do not. Before discussing tasks
and threads, we first describe the run loop in GNUstep programs.

8.11.1 Run Loops and Timers

NSRunLoop instances handle various utility tasks that must be performed repetitively in
an application, such as processing input events, listening for distributed objects communi-
cations, firing NSTimers, and sending notifications and other messages asynchronously. In

Chapter 8: Base Library 95

general, there is one run loop per thread in an application, which may always be obtained
through the +currentRunLoop method, however unless you are using the AppKit and the
[NSApplication] class, the run loop will not be started unless you explicitly send it a -run
message.
At any given point, a run loop operates in a single mode, usually NSDefaultRunLoopMode.
Other modes are used for special purposes and you usually need not worry about them.
An NSTimer provides a way to send a message at some time in the future, possibly repeating
every time a fixed interval has passed. To use a timer, you can either create one that will au-
tomatically be added to the run loop in the current thread (using the -addTimer:forMode:
method), or you can create it without adding it then add it to a run loop of your choosing
later.

8.11.2 Tasks and Pipes

You can run another program as a subprocess using an NSTask instance, and communicate
with it using NSPipe instances. The following code illustrates.

NSTask *task = [[NSTask alloc] init];
NSPipe *pipe = [NSPipe pipe];
NSFileHandle *readHandle = [pipe fileHandleForReading];
NSData *inData = nil;

[task setStandardOutput: pipe];
[task setLaunchPath: [NSHomeDirectory()

stringByAppendingPathComponent:@"bin/someBinary"]];
[task launch];

while ((inData = [readHandle availableData]) && [inData length])
{
[self processData:inData];

}
[task release];

Here, we just assume the task has exited when it has finished sending output. If this might
not be the case, you can register an observer for Chapter 8 [Notifications], page 83 named
NSTaskDidTerminateNotification.

8.11.3 Threads and Locks

Threads provide a way for applications to execute multiple tasks in parallel. Unlike separate
processes, all threads of a program share the same memory space, and therefore may access
the same objects and variables.
GNUstep supports multithreaded applications in a convenient manner through the
NSThread and NSLock classes and subclasses. NSThread +detachNewThreadSelector:toTarget:withObject:
allows you to initiate a new thread and cause a message to be sent to an object on that
thread. The thread can either run in a “one-shot” manner or it can sit in loop mode
(starting up its own instance of the NSRunLoop class) and communicate with other threads
using part of the Chapter 7 [Distributed Objects], page 63 framework. Each thread has a
dictionary (accessed through -threadDictionary that allows for storage of thread-local
variables.

96 Objective-C GNUstep Base Programming Manual

Because threads share data, there is the danger that examinations of and modifications
to data performed concurrently by more than one thread will occur in the wrong order
and produce unexpected results. (Operations with immutable objects do not present this
problem unless they are actually deallocated.) GNUstep provides the NSLocking protocol
and the NSLock class and subclasses to deal with this. NSLocking provides two methods: -
lock and -unlock. When an operation needs to be performed without interference, enclose
it inside of lock-unlock:

NSArray *myArray;
NSLock *myLock = [[NSLock alloc] init];
// ...

[myLock lock];
if (myArray == nil)
{
myAray = [[NSMutableArray alloc] init];
[myArray addObject: someObject];

}
[myLock unlock];

This code protects ’myArray’ from accidentally being initialized twice if two separate threads
happen to detect it is nil around the same time. When the lock method is called, the
thread doing so is said to acquire the lock. No other thread may subsequently acquire the
lock until this one has subsequently relinquished the lock, by calling unlock.
Note that the lock object should be initialized before any thread might possibly need it.
Thus, you should either do it before any additional threads are created in the application,
or you should enclose the lock creation inside of another, existing, lock.
The -lock method in the NSLocking protocol blocks indefinitely until the lock is acquired.
If you would prefer to just check whether the lock can be acquired without committing to
this, you can use NSLock -tryLock or NSLock -lockBeforeDate:, which return YES if they
succeed in acquiring the lock.
NSRecursiveLock is an NSLock subclass that may be locked multiple times by the same
thread. (The NSLock implementation will not allow this, causing the thread to deadlock
(freeze) when it attempts to acquire the lock a second time.) Each lock message must be
balanced by a corresponding unlock before the lock is relinquished.
NSConditionLock stores an int together with its lock status. The -
lockWhenCondition:(int)value and related methods request the lock only if
the condition is equal to that passed in. The condition may be changed using the
unlockWithCondition:(int)value method. This mechanism is useful for, e.g., a
producer-consumer situation, where the producer can “tell” the consumer that data is
available by setting the condition appropriately when it releases the lock it acquired for
adding data.
Finally, the NSDistributedLock class does not adopt the NSLocking protocol but supports
locking across processes, including processes on different machines, as long as they can
access a common filesystem.
If you are writing a class library and do not know whether it will be used in a
multithreaded environment or not, and would like to avoid locking overhead if not,
use the NSThread +isMultiThreaded method. You can also register to receive

Chapter 8: Base Library 97

NSWillBecomeMultiThreadedNotifications. You can also use the GSLazyLock and
GSLazyRecursiveLock classes (see next section) which handle this automatically.

8.11.4 Using NSConnection to Communicate Between Threads

You can use the distributed objects framework to communicate between threads. This can
help avoid creating threads repeatedly for the same operation, for example. While you can
go through the full process of registering a server object by name as described in Chap-
ter 7 [Distributed Objects], page 63, a lighter weight approach is to create NSConnections
manually:

// code in Master...
- startSlave
{
NSPort *master;
NSPort *slave;
NSArray *ports;
NSConnection *comms;

master = [NSPort port];
slave = [NSPort port];

comms = [[NSConnection alloc] initWithReceivePort: master sendPort: slave];
[comms setRootObject: self];

portArray = [NSArray arrayWithObjects: slave, master, nil];

[NSThread detachNewThreadSelector: @selector(newWithCommPorts:)
toTarget: [Slave class]

withObject: ports];
}

// code in Slave...
+ newWithCommPorts: (NSArray *)ports
{
NSConnection *comms;

NSPort *slave = [ports objectAtIndex: 0];
NSPort *master = [ports objectAtIndex: 1];

comms = [NSConnection connectionWithReceivePort: slave sendPort: master];

// create instance and assign to ’self’
self = [[self alloc] init];

[(id)[comms rootProxy] setServer: self];
[self release];

98 Objective-C GNUstep Base Programming Manual

[[NSRunLoop currentRunLoop] run];
}

8.12 GNUstep Additions

The Base Additions library consists of a number of classes, all beginning with ’GC’ or ’GS’,
that are not specified in OpenStep or Cocoa but have been deemed to be of general utility
by the GNUstep developers. The library is designed so that it can be built and installed
on a system, such as OS X, where GNUstep is not available but an alternate Foundation
implementation is.
It contains the following five categories of classes:

GCxxx These are classes that are substituted (behind the scenes) for certain Foundation
classes if the Base library is compiled with garbage collection enabled. (See
Chapter 3 [Memory Management], page 23.)

GSXMLxxx Classes for parsing XML using DOM- or SAX-like APIs, for processing XPath
expressions, and for performing XSLT transforms. These are implemented over
the libxml2 C library, and using them should for the most part protect you
from the frequent API changes in that library.

GSHtmlXxx
Classes for parsing HTML documents (not necessarily XHTML).

GSMimeXxx
Classes for handling MIME messages or HTML POST documents.

GSLazyXxx
Classes implementing “lazy” locking that do not actually attempt any locking
unless running in a multithreaded application. See Chapter 8 [Threads and
Run Control], page 83.

All of these classes have excellent API reference documentation and you should look there
for further information.

../../BaseAdditions/Reference/index.html
http://xmlsoft.org
../../BaseAdditions/Reference/index.html

Appendix A: The GNUstep Documentation System 99

Appendix A The GNUstep Documentation
System

GNUstep includes its own documentation system for producing HTML, PDF, and other
readable documents for developers and users. (It also includes facilities for “Help” accessed
within applications, but these are not covered here.) It is based on GSdoc, an XML language
designed specifically for writing documentation for the GNUstep project. In practice, that
means that it is designed for writing about software, and in particular, for writing about
Objective-C classes.

It may be used to write narrative documentation by hand, and it can also be autogenerated
by the autogsdoc tool, which parses Objective-C source files and documents classes, meth-
ods, functions, macros, and variables found therein, picking up on special comments when
provided to enhance the documentation.

You can read more about GSdoc itself in this document.

The autogsdoc tool is described here.

(Both of these documents are part of the Base Tools documentation.)

A.1 Quick Start

The basic approach to using GSdoc is this: when writing source code, put comments that
begin with “/**” instead of the usual C “/*” in your @interface or @implementation file
above class, variable, and method declarations. If you have any functions or macros you
are making available put such comments in front of them too. The comments still end with
the regular “*/”, no “**/” is necessary.

/**
* The point class represents 2-d locations independently of any graphical
* representation.
*/

@interface Point : NSObject
{

// instance variables ...
}

/**
* New point at 0,0.
*/
+ new;

// ...

/**
* Return point’s current X position.
*/
- (float) x;
// ...
@end

http://www.gnustep.org
../../Tools/Reference/gsdoc.html
../../Tools/Reference/autogsdoc.html
../../Tools/Reference/index.html

100 Objective-C GNUstep Base Programming Manual

When you are finished, invoke autogsdoc giving it the names of all your header files. (It
will find the implementation files automatically, as long as they have the same names;
alternatively, give it the names of the implementation files as well.) This will produce a set
of HTML files describing your classes. If you include the ’-MakeFrames YES’ argument, the
HTML will be structured into frames for easy navigation.
(Autogsdoc, like all GNUstep command line tools, is found in the ${GNUSTEP SYSTEM ROOT}/Tools
directory.)
You can also generate documentation automatically using the GNUstep make utility. Con-
sult its primary documentation for details. The short story is:

include $(GNUSTEP_MAKEFILES)/common.make

DOCUMENT_NAME = MyProject

MyProject_AGSDOC_FILES = <space-separated list of header files>
MyProject_AGSDOC_FLAGS = <flags, like MakeFrames YES>

include $(GNUSTEP_MAKEFILES)/documentation.make

Usually this is put into a separate makefile called “DocMakeFile” in the source directory.

A.2 Cross-Referencing

GSdoc provides the ability to reference entities both within the project and in external
projects. When writing GSdoc comments in source code, references are particularly easy to
create. To refer to an argument of the method or function you are documenting, just type
it normally; it will be presented in a special type face in the final documentation to show
it is an argument. To refer to another method within the same class you are documenting,
just type its selector with the + or - sign in front. This will be converted into a hyperlink
in output forms that support that. To refer to another class, you just type the class’s
name in [Brackets]. To refer to a method in another class, put the method selector after
the name, as in [Class-methodWithArg1:andArg2:] (do not include a space). To refer to a
protocol, use [(BracketsAndParentheses)] instead of just brackets. To refer to a category,
use [Class(Category)]. For methods in these two cases, put the method name outside the
parentheses. To refer to a function, simply type its name suffixed by parentheses().

A.3 Comment the Interface or the Implementation?

Since autogsdoc picks up comments both from interface/header files and implementa-
tion/source files, you might be wondering where it is best to put them. There is no consensus
on this issue. If you put them in the interface, then anyone you distribute your library to
(with the headers but not the source) will be able to generate the documentation. The
header file carries all of the specification for the class’s behavior. On the other hand, if
you put the comments in the implementation, then people editing the source code will have
the method descriptions handy when they need them. If autogsdoc finds comments for the
same entity in both interface and implementation, they are concatenated in the result.
Nonetheless, the recommendation of this author is that you put the comments in the header,
since this is more within the spirit of Objective-C, where the interface file declares the
behavior of a class.

../../Make/Manual/make_toc.html

Appendix A: The GNUstep Documentation System 101

A.4 Comparison with OS X Header Doc and Java JavaDoc

The HTML output from all of these systems is roughly comparable. In terms of and
comments needed in the source code to produce good class documentation, the GSdoc /
autogsdoc system aims for maximal simplicity. In practice, requiring lots of special format-
ting makes developers less likely to document things, therefore, as described above, GSdoc
does not require it, letting the parser do the work instead of the person.
In terms of non-HTML output formats and control over the HTML format, these are not
provided with GSdoc, yet, but there are plans to provide them through the use of XSLT as
a presentation layer.

102 Objective-C GNUstep Base Programming Manual

Appendix B: Application Resources: Bundles and Frameworks 103

Appendix B Application Resources: Bundles and
Frameworks

TBD

104 Objective-C GNUstep Base Programming Manual

Appendix C: Differences and Similarities Between Objective-C, Java, and C++ 105

Appendix C Differences and Similarities Between
Objective-C, Java, and C++

This appendix explains the differences/similarities between Objective-C and Java. It does
not cover the Java Interface to GNUstep (JIGS; see Appendix D [Java and Guile], page 109),
but is included to help people who want to learn Objective-C and know Java already.

C.1 General

• C programmers may learn Objective-C in hours (though real expertise obviously takes
much longer).

• Java has global market acceptance.
• Objective-C is a compiled OO programming language.
• Java is both compiled and interpreted and therefore does not offer the same run-time

performance as Objective-C.
• Objective-C features efficient, transparent Distributed Objects.
• Java features a less efficient and less transparent Remote Machine Interface.
• Objective-C has basic CORBA compatibility through official C bindings, and full com-

patibility through unofficial Objective-C bindings.
• Java has CORBA compatibility through official Java bindings.
• Objective-C is portable across heterogeneous networks by virtue of a near omnipresent

compiler (gcc).
• Java is portable across heterogeneous networks by using client-side JVMs that are

software processors or runtime environments.

C.2 Language

• Objective-C is a superset of the C programming language, and may be used to develop
non-OO and OO programs. Objective-C provides access to scalar types, structures and
to unions, whereas Java only addresses a small number of scalar types and everything
else is an object. Objective-C provides zero-cost access to existing software libraries
written in C, Java requires interfaces to be written and incurs runtime overheads.

• Objective-C is dynamically typed but also provides static typing. Java is statically
typed, but provides type-casting mechanisms to work around some of the limitations
of static typing.

• Java tools support a convention of a universal and distributed name-space for classes,
where classes may be downloaded from remote systems to clients. Objective-C has no
such conventions or tool support in place.

• Using Java, class definitions may not be extended or divided through the addition of
logical groupings. Objective-C provides categories as a solution to this problem.

• Objective-C provides delegation (the benefits of multiple inheritance without the draw-
backs) at minimal programming cost. Java requires purpose written methods for any
delegation implemented.

• Java provides garbage collection for memory management. Objective-C provides man-
ual memory management, reference counting, and garbage collection as options.

• Java provides interfaces, Objective-C provides protocols.

106 Objective-C GNUstep Base Programming Manual

C.3 Source Differences

• Objective-C is based on C, and the OO extensions are comparable with those of
Smalltalk. The Java syntax is based on the C++ programming language.

• The object (and runtime) models are comparable, with Java’s implementation having
a subset of the functionality of that of Objective-C.

C.4 Compiler Differences

• Objective-C compilation is specific to the target system/environment, and because it
is an authentic compiled language it runs at higher speeds than Java.

• Java is compiled into a byte stream or Java tokens that are interpreted by the target
system, though fully compiled Java is possible.

C.5 Developer’s Workbench

• Objective-C is supported by tools such as GNUstep that provides GUI development,
compilation, testing features, debugging capabilities, project management and database
access. It also has numerous tools for developing projects of different types including
documentation.

• Java is supported by numerous integrated development environments (IDEs) that often
have their origins in C++ tools. Java has a documentation tool that parses source code
and creates documentation based on program comments. There are similar features
for Objective-C.

• Java is more widely used.
• Objective-C may leverage investment already made in C based tools.

C.6 Longevity

• Objective-C has been used for over ten years, and is considered to be in a stable and
proven state, with minor enhancements from time to time.

• Java is evolving constantly.

C.7 Databases

• Apple’s EOF tools enable Objective-C developers to build object models from existing
relational database tables. Changes in the database are automatically recognised, and
there is no requirement for SQL development.

• Java uses JDBC that requires SQL development; database changes affect the Java
code. This is considered inferior to EOF. Enterprise JavaBeans with container man-
aged persistence provides a limited database capability, however this comes with much
additional baggage. Other object-relational tools and APIs are being developed for
Java (ca. 2004), but it is unclear which of these, if any, will become a standard.

C.8 Memory

• For object allocation Java has a fixed heap whose maximum size is set when the JVM
starts and cannot be resized unless the JVM is restarted. This is considered to be a

Appendix C: Differences and Similarities Between Objective-C, Java, and C++ 107

disadvantage in certain scenarios: for example, data read from databases may cause
the JVM to run out of memory and to crash.

• Objective-C’s heap is managed by the OS and the runtime system. This can typically
grow to consume all system memory (unless per-process limits have been registered
with the OS).

C.9 Class Libraries

• Objective-C: Consistent APIs are defined by the OpenStep specification. This is im-
plemented by GNUstep and Mac OS X Cocoa. Third-party APIs are available (called
Frameworks).

• Java: APIs are defined and implemented by the Sun Java Development Kit distribu-
tions. Other providers of Java implementations (IBM, BEA, etc.) implement these as
well.

• The Java APIs are complex owing to the presence of multiple layers of evolution while
maintaining backwards compatibility. Collections, IO, and Windowing are all examples
of replicated functionality, in which the copies are incompletely separated, requiring
knowledge of both to use.

• The OpenStep API is the result of continuing evolution but backward compatibility
was maintained by the presence of separate library versions. Therefore the API is clean
and nonredundant. Style is consistent.

• The OpenStep non-graphical API consists of about 70 classes and about 150 functions.
• The equivalent part of the Java non-graphical API consists of about 230 classes.
• The OpenStep graphical API consists of about 120 classes and 30 functions.
• The equivalent part of the Java graphical API consists of about 450 classes.

108 Objective-C GNUstep Base Programming Manual

Appendix D: Programming GNUstep in Java and Guile 109

Appendix D Programming GNUstep in Java and
Guile

TBD

110 Objective-C GNUstep Base Programming Manual

Appendix E: GNUstep Compliance to Standards 111

Appendix E GNUstep Compliance to Standards

GNUstep is generally compatible with the OpenStep specification and with recent devel-
opments of the MacOS-X (Cocoa) API. Where MacOS deviates from the OpenStep API,
GNUstep generally attempts to support both versions. In some cases the newer MacOS
APIs are incompatible with OpenStep, and GNUstep usually supports the richer version.
In order to deal with compatiblity issues, GNUstep uses two mechanisms - it provides
conditionally compiled sections of the library header files, so that software can be built that
will conform strictly to a particular API, and it provides user default settings to control the
behavior of the library at runtime.

E.1 Conditional Compilation

Adding an option to a makefile to define one of the following preprocessor constants will
modify the API visible to software being compiled -

[preprocessor]NO_GNUSTEP
GNUstep specific extensions to the OpenStep and MacOS cocoa APIs are excluded
from the headers.

[preprocessor]STRICT_MACOS_X
Only methods and classes that are part of the MacOS cocoa API are made available
in the headers.

[preprocessor]STRICT_OPENSTEP
Only methods and classes that are part of the OpenStep specification are made avail-
able in the headers.

Note, these preprocessor constants are used in developer code (ie the code that users of
GNUstep write) rather than by the GNUstep software itself. They permit a developer
to ensure that he/she does not write code which depends upon API not present on other
implementations (in practice, MacOS-X or some old OPENSTEP systems). The actual
GNUstep libraries are always built with the full GNUstep API in place, so that the feature
set is as consistent as possible.

E.2 User Defaults

User defaults may be specified ...

[defaults]GNU-Debug
An array of strings that lists debug levels to be used within the program. These
debug levels are merged with any which were set on the command line or added
programmatically to the set given by the [NSProcessInfo-debugSet] method.

[defaults]GSLogSyslog
Setting the user default GSLogSyslog to YES will cause log/debug output to be sent
to the syslog facility (on systems which support it), rather than to the standard error
stream. This is useful in environments where stderr has been re-used strangely for
some reason.

112 Objective-C GNUstep Base Programming Manual

[defaults]GSMacOSXCompatible
Setting the user default GSMacOSXCompatible to YES will cause MacOS compatible
behavior to be the default at runtime. This default may however be overridden to
provide more fine grained control of system behavior.

[defaults]GSOldStyleGeometry
Specifies whether the functions for producing strings describing geometric structures
(NSStringFromPoint(), NSStringFromSize(), and NSStringFromRect()) should pro-
duce strings conforming to the OpenStep specification or to MacOS-X behavior. The
functions for parsing those strings should cope with both cases anyway.

[defaults]GSSOCKS
May be used to specify a default SOCKS5 server (and optionally a port separated
from the server by a colon) to which tcp/ip connections made using the NSFileHandle
extension methods should be directed.
This default overrides the SOCKS5 SERVER and SOCKS SERVER environment
variables.

[defaults]Local Time Zone
Used to specify the name of the timezone to be used by the NSTimeZone class.

[defaults]NSWriteOldStylePropertyLists
Specifies whether text property-list output should be in the default MacOS-X format
(XML), or in the more human readable (but less powerful) original OpenStep format.
Reading of property lists is supported in either format, but only if GNUstep is built
with the libxml library (which is needed to handle XML parsing).
NB. MacOS-X generates illegal XML for some strings - those which contain characters
not legal in XML. GNUstep always generates legal XML, at the cost of a certain
degree of compatibility. GNUstep XML property lists use a backslash to escape
illegal chatracters, and consequently any string containing either a backslash or an
illegal character will be written differently to the same string on MacOS-X.

[defaults]NSLanguages
An array of strings that lists the users prefered languages, in order or preference. If
not found the default is just English.

Appendix F: Using the GNUstep Make Package 113

Appendix F Using the GNUstep Make Package

Reference/doc on the GNUstep make package; mainly examples of various types of projects.

F.1 Makefile Contents

Note. Type man make for assistance.

Make files comprise four key content types:
• Comments

prefixes comments.
• Macros

SRC=main.m assigns a macro that is implemented as:gcc $(SRC) and is interpreted as:
gcc main.m

• Explicit rules Explicit rules are used to indicate which files depend upon supporting
files and the commands required for their compilation:

targetfile : sourcefiles
commands

A Tab precedes each command that must be implemented on the source files in order
to create the target file:

main: main.m List.h
gcc -o main main.m List.h

• Implicit rules Implicit rules broadly echo explicit variants but do not specify commands,
rather the extensions indicate which commands are performed:
servertest.o: servertest.c io.h
is interpreted as:
$(CC) $(CFLAGS) -c servertest.c io.h

F.1.1 Makefile Example

The following two lines force the standard make to recognize the
Objective-C .m suffix.

.SUFFIXES: .o .m

.m.o:
$(CC) -c $(CFLAGS) $<

Macro declarations

CC = gcc
CFLAGS = -g
LIBS = -lobjc
SRC=main.m Truck.m Station.m Vehicle.m
OBJ=main.o Truck.o Station.o Vehicle.o

114 Objective-C GNUstep Base Programming Manual

Explicit rules

hist: $(OBJ)
$(CC) $(CFLAGS) -o main $(OBJ) $(LIBS)

Implicit rules

Truck.o: Truck.h Truck.m
Station.o: Truck.h Station.h Station.m
Vehicle.o: Truck.h Vehicle.h Vehicle.m
main.o: Station.h Vehicle.h

F.1.2 Makefile Structure

The following Makefile defines a project:

#
A GNUmakefile
#

Include the common variables
include $(GNUSTEP_MAKEFILES)/common.make

Build an Objective-C program
OBJC_PROGRAM_NAME = simple

Objective-C files requiring compilation
simple_OBJC_FILES = simple.m

-include GNUmakefile.preamble

Include in the rules for making Objective-C programs
include $(GNUSTEP_MAKEFILES)/objc.make

-include GNUmakefile.postamble

To compile a package that uses the Makefile Package, type make in the top-level directory
of the package. A non-GNUstep Objective-C file may be compiled by adding -lobjc on at
the command line.

F.1.3 Debug and Profile Information

By default the Makefile Package does not flag the compiler to generate debugging informa-
tion that is generated by typing:

make debug=yes

This command also causes the Makefile Package to turn off optimization. It is therefore
necessary to override the optimization flag when running Make if both debugging informa-

Appendix F: Using the GNUstep Make Package 115

tion and optimization is required. Use the variable OPTFLAG to override the optimization
flag.
By default the Makefile Package does not instruct the compiler to create profiling informa-
tion that is generated by typing:
make profile=yes

F.1.4 Static, Shared and DLLs

By default the Makefile Package generates a shared library if it is building a library project
type, and it will link with shared libraries if it is building an application or command-line
tool project type. To tell the Makefile Package not to build using shared libraries but using
static libraries instead, type:
make shared=no

This default is only applicable on systems that support shared libraries; systems that do
not support shared libraries will always build using static libraries. Some systems support
DLLs that are a form of shared libraries; on these systems DLLs are built by default unless
the Makefile Package is told to build using static libraries instead.

F.2 Project Types

Projects are divided into different types. To create a project of a specific type, a make file
is specified:
include $(GNUSTEP_MAKEFILES)/application.make

Each project type is independent, and if you want to create two project types in the same
directory (e.g. a tool and a Java program), include both the desired make files in your main
Make file.
• Aggregate - aggregate.make

An Aggregate project holds several sub-projects that are of any valid project type
(including the Aggregate type). The only project variable is the SUBPROJECTS
variable:
Aggregate project: SUBPROJECTS

SUBPROJECTS defines the directory names that hold the sub-projects that the Ag-
gregate project should build.

• Graphical Applications - application.make
An application is an Objective-C program that includes a GUI component, and by
default links in all the GNUstep libraries required for GUI development, such as the
Base and GUI libraries.

• Bundles - bundle.make
A bundle is a collection of resources and code that can be used to enhance an existing
application or tool dynamically using the NSBundle class from the GNUstep base
library.

• Command Line C Tools - ctool.make
A ctool is a project that uses only C language files. Otherwise it is similar to the ObjC
project type.

116 Objective-C GNUstep Base Programming Manual

• Documentation - documentation.make
The Documentation project provides rules to use various types of documentation such
as texi and LaTeX documentation, and convert them into finished documentation like
info, PostScript, HTML, etc.

• Frameworks - framework.make
A Framework is a collection of resources and a library that provides common code that
can be linked into a Tool or Application. In many respects it is similar to a Bundle.

• Java - java.make
This project provides rules for building java programs. It also makes it easy to make
java projects that interact with the GNUstep libraries.

• Libraries - library.make
The Makefile Package provides a project type for building libraries that may be static,
shared, or dynamic link libraries (DLLs). The latter two variants are supported only
on some platforms.

Concept Index 117

Concept Index

A
abstract class . 14
advanced messaging . 49
allocating objects . 23
AppKit . 7
assertion facilities . 55
assertion handling, compared with Java 62
assertions . 61

B
base library . 83
basic OO terminology . 3
bundles . 103
bycopy and byref type qualifiers 79

C
categories . 43
class cluster . 15
class, abstract . 14
class, root . 15
classes . 13
client/server processes . 63
cluster, classes . 15
compilation, conditional . 111

D
differences and similarities, Objective-C and C++

. 105
differences and similarities, Objective-C and Java

. 105
directory layout . 7
distributed objects . 63
Distributed Objects Name Server, GNUstep . . . 69
distributed objects, client code 64, 65
distributed objects, error checking. 82
distributed objects, example (no error checking)

. 70
distributed objects, using a protocol 67

E
error checking, distributed objects 82
exception facilities . 55
exception handling, compared with Java 62
exceptions . 55

F
filesystem layout . 7
forward invocation, distributed objects 81

forwarding . 52
frameworks . 103

G
game server example . 70
garbage collection . 29
gdomap . 69
GNUstep base library . 6
GNUstep Make package . 113
GNUstep make utility . 7
GNUstep, what is? . 6
graphical programming . 7
gsdoc . 99
GUI . 7

H
history of NeXTstep . 5
history of Objective-C . 5
history of OpenStep . 5

I
in, out, and inout type qualifiers 79
inheritance . 13
inheriting methods . 14
instance variables, referring to 17
interface . 31

J
Java and Guile, programming GNUstep 109

L
layout, filesystem . 7
logging . 59
logging facilities . 55
logging, compared with Java 62

M
Make package, GNUstep . 113
make utility, GNUstep . 7
memory deallocation . 25
memory management . 25
memory management, explicit 25
memory management, garbage collection based

. 29
memory management, OpenStep-style 26
memory management, retain count 26
message forwarding, distributed objects. 81
messages . 12

118 Objective-C GNUstep Base Programming Manual

messaging, advanced techniques 49

N
naming constraints . 18
naming conventions . 18
NeXTstep, history . 5
NS DURING macro . 55
NS ENDHANDLER macro 55
NS HANDLER macro . 55
NSAssert macro . 61
NSAssertionHandler class . 61
NSConnection class . 63
NSDebugLog function . 59
NSException class . 55
NSLog function . 59
NSObject . 15
NSProxy class . 63
NSRunLoop class . 63
NSUncaughtExceptionHandler 55
NSWarnLog function . 59

O
object interaction, remote objects 63
object-oriented programming 3
Objective-C and C++, differences and similarities

. 105
Objective-C and Java, differences and similarities

. 105
Objective-C, history . 5
Objective-C, what is? . 5
objects . 11
objects, initalizing and allocating 23
objects, working with . 23
oneway, type qualifier . 79
OpenStep compliance . 111
OpenStep, history . 5
OS X compatibility . 111
out, type qualifier . 79
overriding methods . 14

P
polymorphism . 13
profiling facilities . 59
protocol for distributed objects 67
protocol type qualifiers . 79
protocols . 41
protocols, formal . 41

R
remote objects . 63
resources, application . 103
root class . 15

S
standards compliance . 111
standards, GNUstep compliance to 111
static typing . 16

U
user defaults, API compliance 111

W
what is GNUstep? . 6
what is Objective-C? . 5
working with objects . 23
writing new classes. 31

Y
your first Objective-C program 8

Z
Zones . 24

	Introduction
	What is Object-Oriented Programming?
	Some Basic OO Terminology

	What is Objective-C?
	History
	What is GNUstep?
	GNUstep Base Library
	GNUstep Make Utility
	A Word on the Graphical Environment
	The GNUstep Directory Layout

	Building Your First Objective-C Program

	The Objective-C Language
	Non OO Additions
	Objects
	Id and nil
	Messages
	Polymorphism

	Classes
	Inheritance
	Inheritance of Methods
	Overriding Methods
	Abstract Classes
	Class Clusters

	NSObject: The Root Class
	The NSObject Protocol

	Static Typing
	Type Introspection
	Referring to Instance Variables

	Working with Class Objects
	Locating Classes Dynamically

	Naming Constraints and Conventions
	Strings in GNUstep
	Creating NSString Static Instances
	NSString +stringWithFormat:
	C String Conversion
	NSMutableString
	Loading and Saving Strings

	Working with Objects
	Initializing and Allocating Objects
	Initialization with Arguments
	Memory Allocation and Zones
	Memory Deallocation

	Memory Management
	Explicit Memory Management
	OpenStep-Style (Retain/Release) Memory Management
	Autorelease Pools
	Avoiding Retain Cycles
	Summary

	Garbage Collection Based Memory Management
	Current Recommendations

	Writing New Classes
	Interface
	Interface Capabilities
	Including Interfaces
	Referring to Classes - @class

	Implementation
	Writing an Implementation
	Super and Self
	Instance Initialization
	Flexible Initialization
	Instance Deallocation

	Protocols
	Declaring a Formal Protocol
	Implementing a Formal Protocol
	Using a Formal Protocol

	Categories
	Category Overrides
	Categories as an Implementation Tool
	Categories and Protocols

	Simulating Private and Protected Methods
	Simulating Class Variables

	Advanced Messaging
	How Messaging Works
	Selectors
	The Target-Action Paradigm
	Obtaining Selectors
	Avoiding Messaging Errors when an Implementation is Not Found

	Forwarding
	Implementations

	Exception Handling, Logging, and Assertions
	Exceptions
	Catching and Handling Exceptions
	Passing Exceptions Up the Call Stack
	Where do Exceptions Originate?
	Creating Exceptions
	When to Use Exceptions

	Logging
	NSLog
	NSDebugLog, NSWarnLog
	Last Resorts: GSPrintf and fprintf
	Profiling Facilities

	Assertions
	Assertions and their Handling
	Custom Assertion Handling

	Comparison with Java

	Distributed Objects
	Object Interaction
	The GNUstep Solution
	Code at the Server
	Code at the Client
	Using a Protocol
	Complete Code for Telephone Directory Application
	GNUstep Distributed Objects Name Server
	Look Ma, No Stubs!

	A More Involved Example
	Protocol Adopted at Client
	Protocol Adopted at Server
	Code at the Client
	Code at the Server

	Language Support for Distributed Objects
	Protocol Type Qualifiers
	Message Forwarding

	Error Checking
	Vending the Server Object
	Catching Exceptions
	The Connection Fails

	Base Library
	Copying, Comparing, Hashing Objects
	Object Containers
	Data and Number Containers
	NSData
	NSValue
	NSNumber
	NSRange, NSPoint, NSSize, NSRect

	Date/Time Facilities
	String Manipulation and Text Processing
	NSScanner and Character Sets
	Attributed Strings
	Formatters

	File Handling
	Persistence and Serialization
	Property List Serialization
	Archives

	Utility
	Notifications
	Networking and RPC
	Basic Networking
	Remote Process Communications

	Threads and Run Control
	Run Loops and Timers
	Tasks and Pipes
	Threads and Locks
	Using NSConnection to Communicate Between Threads

	GNUstep Additions

	The GNUstep Documentation System
	Quick Start
	Cross-Referencing
	Comment the Interface or the Implementation?
	Comparison with OS X Header Doc and Java JavaDoc

	Application Resources: Bundles and Frameworks
	Differences and Similarities Between Objective-C, Java, and C++
	General
	Language
	Source Differences
	Compiler Differences
	Developer's Workbench
	Longevity
	Databases
	Memory
	Class Libraries

	Programming GNUstep in Java and Guile
	GNUstep Compliance to Standards
	Conditional Compilation
	User Defaults

	Using the GNUstep Make Package
	Makefile Contents
	Makefile Example
	Makefile Structure
	Debug and Profile Information
	Static, Shared and DLLs

	Project Types

	Concept Index

